Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical reactions INDEX

A second theoretical index, and one for which there appears to be more justification in its application to free-radical reactions, is the atom localization energy. This index is a measure of the energy required to localize one electron of the 7r-electron system in the aromatic molecule at the point of attack of the radical. The formation of the intermediate adduct in a free-radical aromatic substitution may be regarded as the sum of two processes one, the localization of an electron at the point of attack and the other, the pairing of this... [Pg.175]

Grootveld, M. and Halliwell, B. (1987). Measurement of allan-toin and uric acid in human body fluids. A potential index of free radical reactions in vivo Biochem. J. 243, 803-808. [Pg.20]

The properties of the minors of the secular determinant of an alternant hydrocarbon may again be used to show that the integrals for which the index is even in (44) and odd in (45) and (46) are zero. It follows that the finite change Aq is an odd function, of Sa, while AFg and Apgt are even. Any inequalities between values of any index for two different positions u), as defined in equations (31) to (34) which arise as first terms of the corresponding infinite series in (44) to (46), persist term-by-term in the expression for the exact finite changes (Baba, 1957). In consequence, the broad agreement with experiment found earlier in the description of ionic and radical reactions by the approximate method carries over to the exact form. [Pg.100]

The free-valence index is actually found to be of greatest importance in free-radical reactions. Early work by SwareRl° investigated the rate... [Pg.143]

Eisch et al. (24) performed a mechanistic study of the desulfurization of dibenzothiophene by a nickel(0)-bipyridyl complex and reported that a radical anion of the thiophene nucleus was formed and underwent C-S bond cleavage into S and an aromatic radical. In addition, they suggested that the oxidative reaction of the nickel(0)-bipyridyl complex toward dibenzothiophene had the characteristics of stepwise electron transfer rather than nucleophilic attack. However, no correlations occurred between the desulfurization rate and the reaction indexes of Fr(E), Fr(N), and Fr(R), as shown in Table II. The results suggested no evidence for either electron transfer or nucleophilic attack in this study. Moreover, the radical reaction was not... [Pg.362]

The free radical reactions below have been classified into three main categories those which increase the number of free radicals, those which conserve, and those which decrease the number of free radicals. A two-letter index has been given beside the descriptive term of the reaction which will be used when generating mechanisms. The meaning of the symbols +M and (+M) will be commented on in paragraph 2. The examples are presented with the NANCY linear chemical notation described in the appendix NOTATIONS at the end of the book. [Pg.139]

The minimum polydispersity index from a free-radical polymerization is 1.5 if termination is by combination, or 2.0 if chains ate terminated by disproportionation and/or transfer. Changes in concentrations and temperature during the reaction can lead to much greater polydispersities, however. These concepts of polymerization reaction engineering have been introduced in more detail elsewhere (6). [Pg.436]

Silane radical atom transfer (SRAA) was demonstrated as an efficient, metal-free method to generate polystyrene of controllable molecular weight and low polydispersity index values. (TMSlsSi radicals were generated in situ by reaction of (TMSlsSiH with thermally generated f-BuO radicals as depicted in Scheme 14. (TMSlsSi radicals in the presence of polystyrene bromide (PS -Br), effectively abstract the bromine from the chain terminus and generate macroradicals that undergo coupling reactions (Reaction 70). [Pg.152]

The detailed model was constructed as described by Carslaw et al. (1999, 2002). Briefly, measurements of NMHCs, CO and CH4 were used to define a reactivity index with OH, in order to determine which NMHCs, along with CO and CH4, to include in the overall mechanism. The product of the concentration of each hydrocarbon (and CO) measured on each day during the campaign and its rate coefficient for the reaction with OH was calculated. All NMHCs that are responsible for at least 0.1% of the OH loss due to total hydrocarbons and CO on any day during the campaign are included in the mechanism (Table 2). Reactions of OH with the secondary species formed in the hydrocarbon oxidation processes, as well as oxidation by the nitrate radical (NO3) and ozone are also included in the... [Pg.4]

The bulk polymerization of acrylonitrile in this range of temperatures exhibits kinetic features very similar to those observed with acrylic acid (cf. Table I). The very low over-all activation energies (11.3 and 12.5 Kj.mole-l) found in both systems suggest a high temperature coefficient for the termination step such as would be expected for a diffusion controlled bimolecular reaction involving two polymeric radicals. It follows that for these systems, in which radicals disappear rapidly and where the post-polymerization is strongly reduced, the concepts of nonsteady-state and of occluded polymer chains can hardly explain the observed auto-acceleration. Hence the auto-acceleration of acrylonitrile which persists above 60°C and exhibits the same "autoacceleration index" as at lower temperatures has to be accounted for by another cause. [Pg.244]

Structure effects on the rate of selective or total oxidation of saturated and unsaturated hydrocarbons and their correlations have been used successfully in the exploration of the reaction mechanisms. Adams 150) has shown that the oxidation of alkenes to aldehydes or alkadienes on a BijOj-MoOj catalyst exhibits the same influence of alkene structure on rate as the attack by methyl radicals an excellent Type B correlation has been gained between the rate of these two processes for various alkenes (series 135, five reactants, positive slope). It was concluded on this basis that the rate-determining step of the oxidation is the abstraction of the allylic hydrogen. Similarly, Uchi-jima, Ishida, Uemitsu, and Yoneda 151) correlated the rate of the total oxidation of alkenes on NiO with the quantum-chemical index of delo-calizability of allylic hydrogens (series 136, five reactants). [Pg.188]


See other pages where Radical reactions INDEX is mentioned: [Pg.205]    [Pg.87]    [Pg.27]    [Pg.87]    [Pg.361]    [Pg.120]    [Pg.100]    [Pg.63]    [Pg.1301]    [Pg.292]    [Pg.93]    [Pg.188]    [Pg.150]    [Pg.253]    [Pg.44]    [Pg.437]    [Pg.175]    [Pg.483]    [Pg.201]    [Pg.143]    [Pg.880]    [Pg.456]    [Pg.281]    [Pg.101]    [Pg.448]    [Pg.153]    [Pg.185]    [Pg.531]    [Pg.2]    [Pg.72]    [Pg.112]    [Pg.61]   
See also in sourсe #XX -- [ Pg.159 , Pg.160 , Pg.161 , Pg.162 , Pg.163 , Pg.164 ]




SEARCH



INDEX reactions

Radicals 234 INDEX

© 2024 chempedia.info