Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In p strands

Figure 31.13. DNA Recognition Through p Strands. The structure of the methionine repressor bound to DNA reveals that residues in P strands, rather than a helices, participate in the crucial interactions between the protein and... Figure 31.13. DNA Recognition Through p Strands. The structure of the methionine repressor bound to DNA reveals that residues in P strands, rather than a helices, participate in the crucial interactions between the protein and...
Fig. 10. Sequences (see Table 1) of betabeUins. In each case, only one-half of the P-sandwich is shown. The dimer is formed from identical monomeric sets of four P-strands. In the pattern sequence, e is for end, p is for polar residue, n is for nonpolar residue, and t and r are for turn residues. Lower case f is iodophenyialanine lower case a, d, k, and p are the D-amino acid forms of alanine, aspartic acid, lysine, and proline, respectively B is P-alanine (2,53,60,61). Fig. 10. Sequences (see Table 1) of betabeUins. In each case, only one-half of the P-sandwich is shown. The dimer is formed from identical monomeric sets of four P-strands. In the pattern sequence, e is for end, p is for polar residue, n is for nonpolar residue, and t and r are for turn residues. Lower case f is iodophenyialanine lower case a, d, k, and p are the D-amino acid forms of alanine, aspartic acid, lysine, and proline, respectively B is P-alanine (2,53,60,61).
Figure 1.1 The amino acid sequence of a protein s polypeptide chain is called Its primary structure. Different regions of the sequence form local regular secondary structures, such as alpha (a) helices or beta (P) strands. The tertiary structure is formed by packing such structural elements into one or several compact globular units called domains. The final protein may contain several polypeptide chains arranged in a quaternary structure. By formation of such tertiary and quaternary structure amino acids far apart In the sequence are brought close together in three dimensions to form a functional region, an active site. Figure 1.1 The amino acid sequence of a protein s polypeptide chain is called Its primary structure. Different regions of the sequence form local regular secondary structures, such as alpha (a) helices or beta (P) strands. The tertiary structure is formed by packing such structural elements into one or several compact globular units called domains. The final protein may contain several polypeptide chains arranged in a quaternary structure. By formation of such tertiary and quaternary structure amino acids far apart In the sequence are brought close together in three dimensions to form a functional region, an active site.
Figure 2.5 Schematic illustrations of antiparallel (3 sheets. Beta sheets are the second major element of secondary structure in proteins. The (3 strands are either all antiparallel as in this figure or all parallel or mixed as illustrated in following figures, (a) The extended conformation of a (3 strand. Side chains are shown as purple circles. The orientation of the (3 strand is at right angles to those of (b) and (c). A p strand is schematically illustrated as an arrow, from N to C terminus, (bj Schematic illustration of the hydrogen bond pattern in an antiparallel p sheet. Main-chain NH and O atoms within a p sheet are hydrogen bonded to each other. Figure 2.5 Schematic illustrations of antiparallel (3 sheets. Beta sheets are the second major element of secondary structure in proteins. The (3 strands are either all antiparallel as in this figure or all parallel or mixed as illustrated in following figures, (a) The extended conformation of a (3 strand. Side chains are shown as purple circles. The orientation of the (3 strand is at right angles to those of (b) and (c). A p strand is schematically illustrated as an arrow, from N to C terminus, (bj Schematic illustration of the hydrogen bond pattern in an antiparallel p sheet. Main-chain NH and O atoms within a p sheet are hydrogen bonded to each other.
Figure 2.7 (a) Illustration of the twist of (3 sheefs. Befa sfrands are drawn as arrows from the amino end to the carboxy end of the p strand in this schematic drawing of fhe protein thioredoxin from E. coli, fhe sfrucfure of which was defermined in the laboratory of Carl Branden, Uppsala, Sweden, fo 2.8 A resolution. The mixed p sheet is viewed from one of ifs ends, (b) The hydrogen bonds between the P strands in the mixed p sheet of fhe same profein. [(a) Adapfed from B. Furugren.]... [Pg.20]

Beta strands can also combine into mixed P sheets with some P strand pairs parallel and some antiparallel. There is a strong bias against mixed P sheets only about 20% of the strands inside the p sheets of known protein structures have parallel bonding on one side and antiparallel bonding on the other. Figure 2.7 illustrates how the hydrogen bonds between the p strands are arranged in a mixed P sheet. [Pg.20]

Loop regions exposed to solvent are rich in charged and polar hydrophilic residues. This has been used in several prediction schemes, and it has proved possible to predict loop regions from an amino acid sequence with a higher degree of confidence than a helices or p strands, which is ironic since the loops have irregular structures. [Pg.21]

Figure 2.8 Adjacent antiparallel P strands are joined by hairpin loops. Such loops are frequently short and do not have regular secondary structure. Nevertheless, many loop regions in different proteins have similar structures, (a) Histogram showing the frequency of hairpin loops of different lengths in 62 different proteins, (b) The two most frequently occurring two-residue hairpin loops Type I turn to the left and Type II turn to the right. Bonds within the hairpin loop are green, [(a) Adapted from B.L. Sibanda and J.M. Thornton, Nature 316 170-174, 1985.]... Figure 2.8 Adjacent antiparallel P strands are joined by hairpin loops. Such loops are frequently short and do not have regular secondary structure. Nevertheless, many loop regions in different proteins have similar structures, (a) Histogram showing the frequency of hairpin loops of different lengths in 62 different proteins, (b) The two most frequently occurring two-residue hairpin loops Type I turn to the left and Type II turn to the right. Bonds within the hairpin loop are green, [(a) Adapted from B.L. Sibanda and J.M. Thornton, Nature 316 170-174, 1985.]...
Figure 2.15 The Greek key motif is found in antiparallel p sheets when four adjacent p strands are arranged in the pattern shown as a topology diagram in (a). The motif occurs in many p sheets and is exemplified here by the enzyme Staphylococcus nuclease (b). The four p strands that form this motif are colored red and blue. Figure 2.15 The Greek key motif is found in antiparallel p sheets when four adjacent p strands are arranged in the pattern shown as a topology diagram in (a). The motif occurs in many p sheets and is exemplified here by the enzyme Staphylococcus nuclease (b). The four p strands that form this motif are colored red and blue.
The hairpin motif is a simple and frequently used way to connect two antiparallel p strands, since the connected ends of the p strands are close together at the same edge of the p sheet. How are parallel p strands connected If two adjacent strands are consecutive in the amino acid sequence, the two ends that must be joined are at opposite edges of the p sheet. The polypeptide chain must cross the p sheet from one edge to the other and connect the next p strand close to the point where the first p strand started. Such CTossover connections are frequently made by a helices. The polypeptide chain must turn twice using loop regions, and the motif that is formed is thus a p strand followed by a loop, an a helix, another loop, and, finally, the second p strand. [Pg.27]

This motif is called a beta-alpha-beta motif (Figure 2.17) and is found as part of almost every protein structure that has a parallel p sheet. For example, the molecule shown in Figure 2.10b, triosephosphate isomerase, is entirely built up by repeated combinations of this motif, where two successive motifs share one p strand. Alternatively, it can be regarded as being built up from four consecutive p-a-p-a motifs. [Pg.28]

Secondary structure occurs mainly as a helices and p strands. The formation of secondary structure in a local region of the polypeptide chain is to some extent determined by the primary structure. Certain amino acid sequences favor either a helices or p strands others favor formation of loop regions. Secondary structure elements usually arrange themselves in simple motifs, as described earlier. Motifs are formed by packing side chains from adjacent a helices or p strands close to each other. [Pg.29]

Domains are formed by different combinations of secondary structure elements and motifs. The a helices and p strands of the motifs are adjacent to each other in the three-dimensional structure and connected by loop regions. Sequentially adjacent motifs, or motifs that are formed from consecutive regions of the primary structure of a polypeptide chain, are usually close together in the three-dimensional structure (Figure 2.20). Thus to a first approximation a polypeptide chain can be considered as a sequential arrangement of these simple motifs. The number of such combinations found in proteins is limited, and some combinations seem to be structurally favored. Thus similar domain structures frequently occur in different proteins with different functions and with completely different amino acid sequences. [Pg.30]

Figure 2.21 illustrates the 24 possible ways in which two adjacent p hairpin motifs, each consisting of two antiparallel p strands connected by a loop region, can be combined to make a more complex motif. [Pg.30]


See other pages where In p strands is mentioned: [Pg.202]    [Pg.350]    [Pg.195]    [Pg.380]    [Pg.89]    [Pg.86]    [Pg.21]    [Pg.118]    [Pg.118]    [Pg.821]    [Pg.53]    [Pg.140]    [Pg.314]    [Pg.1162]    [Pg.2222]    [Pg.9]    [Pg.239]    [Pg.187]    [Pg.1679]    [Pg.58]    [Pg.202]    [Pg.350]    [Pg.195]    [Pg.380]    [Pg.89]    [Pg.86]    [Pg.21]    [Pg.118]    [Pg.118]    [Pg.821]    [Pg.53]    [Pg.140]    [Pg.314]    [Pg.1162]    [Pg.2222]    [Pg.9]    [Pg.239]    [Pg.187]    [Pg.1679]    [Pg.58]    [Pg.202]    [Pg.9]    [Pg.18]    [Pg.18]    [Pg.19]    [Pg.19]    [Pg.21]    [Pg.21]    [Pg.23]    [Pg.26]    [Pg.26]    [Pg.27]    [Pg.27]    [Pg.27]    [Pg.28]    [Pg.28]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



P strands

© 2024 chempedia.info