Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In fatty acid oxidation

This is a crucial point because (as we will see) proton transport is coupled with ATP synthesis. Oxidation of one FADHg in the electron transport chain results in synthesis of approximately two molecules of ATP, compared with the approximately three ATPs produced by the oxidation of one NADH. Other enzymes can also supply electrons to UQ, including mitochondrial 5w-glyc-erophosphate dehydrogenase, an inner membrane-bound shuttle enzyme, and the fatty acyl-CoA dehydrogenases, three soluble matrix enzymes involved in fatty acid oxidation (Figure 21.7 also see Chapter 24). The path of electrons from succinate to UQ is shown in Figure 21.8. [Pg.684]

Although fatty acids are both oxidized to acetyl-CoA and synthesized from acetyl-CoA, fatty acid oxidation is not the simple reverse of fatty acid biosynthesis but an entirely different process taking place in a separate compartment of the cell. The separation of fatty acid oxidation in mitochondria from biosynthesis in the cytosol allows each process to be individually controlled and integrated with tissue requirements. Each step in fatty acid oxidation involves acyl-CoA derivatives catalyzed by separate enzymes, utihzes NAD and FAD as coenzymes, and generates ATP. It is an aerobic process, requiring the presence of oxygen. [Pg.180]

Increased fatty acid oxidation is a characteristic of starvation and of diabetes meUims, leading to ketone body production by the Ever (ketosis). Ketone bodies are acidic and when produced in excess over long periods, as in diabetes, cause ketoacidosis, which is ultimately fatal. Because gluconeogenesis is dependent upon fatty acid oxidation, any impairment in fatty acid oxidation leads to hypoglycemia. This occurs in various states of carnitine deficiency or deficiency of essential enzymes in fatty acid oxidation, eg, carnitine palmitoyltransferase, or inhibition of fatty acid oxidation by poisons, eg, hypoglycin. [Pg.180]

There are several conditions when an increase in fatty acid oxidation is necessary ... [Pg.136]

Figure 7.15 Inhibition of acetyl-CoA carboxylase by cyclic AMP dependent protein kinase and AMP dependent protein kinase the dual effect of glucagon. Phosphorylation of acetyl-CoA carboxylase by either or both enzymes inactivates the enzyme which leads to a decrease in concentration of malonyl-CoA, and hence an increase in activity of carnitine palmitoyltransferase-I and hence an increase in fatty acid oxidation. Insulin decreases the cyclic AMP concentration maintaining an active carboxylase and a high level of malonyl-CoA to inhibit fatty acid oxidation. Figure 7.15 Inhibition of acetyl-CoA carboxylase by cyclic AMP dependent protein kinase and AMP dependent protein kinase the dual effect of glucagon. Phosphorylation of acetyl-CoA carboxylase by either or both enzymes inactivates the enzyme which leads to a decrease in concentration of malonyl-CoA, and hence an increase in activity of carnitine palmitoyltransferase-I and hence an increase in fatty acid oxidation. Insulin decreases the cyclic AMP concentration maintaining an active carboxylase and a high level of malonyl-CoA to inhibit fatty acid oxidation.
Defects in several proteins involved in fatty acid oxidation are known. These are carnitine palmitoyltransferases, any of the three acyl-CoA dehydrogenases, or the protein that... [Pg.146]

In 1955, Fritz determined that carnitine plays an essential role in fatty acid -oxidation (FAO), and in 1973 the first two clinically relevant disorders affecting this pathway were described primary carnitine deficiency by Engel and Angelini, and carnitine palmitoyltransferase (CPT) type II (CPT-II) deficiency by DiMauro and DiMauro [6, 7]. To date, more than 20 different enzyme deficiency states affecting fatty acid transport and mitochondrial / -oxidaLion have been described [8] and additional enzymes involved in this pathway are still being discovered [9, 10]. [Pg.171]

Step (2) Reduction of the Carbonyl Group The acetoacetyl-ACP formed in the condensation step now undergoes reduction of the carbonyl group at C-3 to form d-j8-hydroxybutyryl-ACP. This reaction is catalyzed by /3-ketoacyl-ACP reductase (KR) and the electron donor is NADPH. Notice that the D-j3-hydroxybutyryl group does not have the same stereoisomeric form as the l-j8-hydroxyacyl intermediate in fatty acid oxidation (see Fig. 17-8). [Pg.791]

Three factors improve the health of individuals with type II diabetes regular exercise, use of thiazolidinediones, and dietary restriction. We have seen that exercise activates AMPK, as does adiponectin, and that thiazolidinediones increase the concentration of adiponectin in plasma, increasing insulin sensitivity. Dietary restriction may act by regulating the expression of genes that encode proteins involved in fatty acid oxidation and in energy expenditure via thermogenesis. [Pg.915]

In mitochondria, there are four fatty acyl CoA dehydrogenase species, each of which has a specificity for either short-, mediurr-long-, or very-long-chain fatty acids. MCAD deficiency, an autos mal, recessive disorder, is one of the most common inborn errors of metabolism, and the most common inborn error of fatty add oxidation, being found in 1 in 12,000 births in the west, and 1 in 40,000 worldwide. It causes a decrease in fatty acid oxidation and severe hypoglycemia (because the tissues cannot obtain full ener getic benefit from fatty acids and, therefore, must now rely on glu cose). Treatment includes a carbohydrate-rich diet. [Note Infants are particularly affected by MCAD deficiency, because they rely for their nourishment on milk, which contains primarily MCADs. [Pg.190]

Explain the role of carnitine acyltransferases in fatty acid oxidation. [Pg.434]

Figure 9-1- Role of carnitine in fatty acid oxidation. Long-chain fatty acids are activated as the thioester of CoA on the cytoplasmic side of the mitochondrial membrane. The fatty acyl group is then transferred to form the corresponding carnitine ester in a reaction catalyzed by carnitine palmitoyltransferase I (CPT ]) The acylcarnitine then enters the mitochondrial matrix in exchange for carnitine via the carnitine-acylcarnitine translocase. The acyl group is transferred back to CoA in the matrix by carnitine palmitoyltransferase II (CPT II). The intramitochondrial acyl-CoA can then undergo P-oxidation. Figure 9-1- Role of carnitine in fatty acid oxidation. Long-chain fatty acids are activated as the thioester of CoA on the cytoplasmic side of the mitochondrial membrane. The fatty acyl group is then transferred to form the corresponding carnitine ester in a reaction catalyzed by carnitine palmitoyltransferase I (CPT ]) The acylcarnitine then enters the mitochondrial matrix in exchange for carnitine via the carnitine-acylcarnitine translocase. The acyl group is transferred back to CoA in the matrix by carnitine palmitoyltransferase II (CPT II). The intramitochondrial acyl-CoA can then undergo P-oxidation.
Figure 32-5. P-oxidation and ketogenesis in the liver. The rate-limiting step in fatty acid oxidation and subsequent ketone body production is the activity of carnitine acyltrans-ferase I (CAT I).The activity of CAT I is inhibited by malonyl-CoA. Insulin deficiency results in inhibition of acetyl-CoA carboxylase, decreased levels of maloyl-CoA, and thus increased activity of CAT-I.Adapted from Foster and McGarry (1983). Figure 32-5. P-oxidation and ketogenesis in the liver. The rate-limiting step in fatty acid oxidation and subsequent ketone body production is the activity of carnitine acyltrans-ferase I (CAT I).The activity of CAT I is inhibited by malonyl-CoA. Insulin deficiency results in inhibition of acetyl-CoA carboxylase, decreased levels of maloyl-CoA, and thus increased activity of CAT-I.Adapted from Foster and McGarry (1983).
The major functions of pantothenic acid are in CoA (Section 12.2.1) and as the prosthetic group for AGP in fatty acid synthesis (Section 12.2.3). In addition to its role in fatty acid oxidation, CoA is the major carrier of acyl groups for a wide variety of acyl transfer reactions. It is noteworthy that a wide variety of metabolic diseases in which there is defective metabolism of an acyl CoA derivative (e.g., the biotin-dependent carboxylase deficiencies Sections 11.2.2.1 and 11.2.3.1), CoA is spared by formation and excretion of acyl carnitine derivatives, possibly to such an extent that the capacity to synthesize carnitine is exceeded, resulting in functional carnitine deficiency (Section 14.1.2). [Pg.352]

The acetyl CoA formed in fatty acid oxidation enters the citric acid cycle only if fat and carbohydrate degradation are appropriately balanced. The reason is that the entry of acetyl CoA into the citric acid cycle depends on the availability of oxaloacetate for the formation of citrate, but the concentration of oxaloacetate is lowered if carbohydrate is unavailable or improperly utilized. Recall that oxaloacetate is normally formed from pyruvate, the product of glycolysis, by pyruvate carboxylase (Section 16.3.1). This is the molecular basis of the adage that fats burn in the flame of carbohydrates. [Pg.912]

The isovaleryl CoA derived from leucine is dehydrogenated to yield -methylcrotonyl CoA. This oxidation is catalyzed by isovaleryl CoA dehydrogenase. The hydrogen acceptor is FAD, as in the analogous reaction in fatty acid oxidation that is catalyzed by acyl CoA dehydrogenase. -Methylglutaconyl CoA is then formed by the carboxylation of P-methylcrotonyl CoA at the expense of the hydrolysis of a molecule of ATP. As might be expected, the carboxylation mechanism of P-methylcrotonyl CoA carboxylase is similar to that of pyruvate carboxylase and acetyl CoA carboxylase. [Pg.968]


See other pages where In fatty acid oxidation is mentioned: [Pg.670]    [Pg.942]    [Pg.569]    [Pg.183]    [Pg.97]    [Pg.146]    [Pg.295]    [Pg.527]    [Pg.5]    [Pg.280]    [Pg.196]    [Pg.485]    [Pg.223]    [Pg.353]    [Pg.197]    [Pg.197]    [Pg.69]    [Pg.942]    [Pg.146]    [Pg.557]    [Pg.621]    [Pg.1202]   
See also in sourсe #XX -- [ Pg.701 , Pg.701 , Pg.705 ]




SEARCH



Fatty acids oxidation

Oxidized fatty acids

© 2024 chempedia.info