Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In electrophilic additions

The electron-rich carbon—carbon double bond reacts with reagents that are deficient in electrons, eg, with electrophilic reagents in electrophilic addition (6,7), free radicals in free-radical addition (8,9), and under acidic conditions with another butylene (cation) in dimerization. [Pg.363]

The three basic mechanisms that have been considered to be involved in electrophilic additions to alkynes are shown below. The first involves a discrete vinyl cation. In general, it can lead to either of the two stereoisomeric addition products. The second mechanism is a termolecular process which would be expected to lead to stereospecific anti addition. The... [Pg.371]

Later in this chapter we ll see how allylic carbocations are involved in electrophilic addition to dienes and how the principles developed in this section apply there as well. [Pg.394]

When an unsymmetrically substituted vinyl monomer such as propylene or styrene is polymerized, the radical addition steps can take place at either end of the double bond to yield either a primary radical intermediate (RCH2-) or a secondary radical (R2CH-). Just as in electrophilic addition reactions, however, we find that only the more highly substituted, secondary radical is formed. [Pg.241]

The first step, as we have already seen (12-3), actually consists of two steps. The second step is very similar to the first step in electrophilic addition to double bonds (p. 970). There is a great deal of evidence for this mechanism (1) the rate is first order in substrate (2) bromine does not appear in the rate expression at all, ° a fact consistent with a rate-determining first step (3) the reaction rate is the same for bromination, chlorination, and iodination under the same conditions (4) the reaction shows an isotope effect and (5) the rate of the step 2-step 3 sequence has been independently measured (by starting with the enol) and found to be very fast. With basic catalysts the mechanism may be the same as that given above (since bases also catalyze formation of the enol), or the reaction may go directly through the enolate ion without formation of the enol ... [Pg.776]

Therefore, the preference of the cycloadditions is opposite in direction to the biases observed in nucleophilic additions of 2-substituted 9,10-dihydro-9,10-ethanoanthracen-11-ones (34) (dibenzobicyclo[2.2.2]octadienones) and in electrophilic additions of 2-substituted 9,10-dihydro-9,10-ethenoanthracenes (dibenzobicyclo[2.2.2]octatrienes) 71 [103]. [Pg.165]

Once again, a large amount of diverse evidence indicates the intermediacy of a vinyl cation in electrophilic additions to arylacetylenes. As in the case of the hydration of alkynyl ethers and thioethers, the vinyl cation formed is especially stable because of resonance interaction and charge delocalization with the adjacent rr center of the aromatic system. [Pg.215]

The formation of any vinyl products in electrophilic additions to RCH=C=CH2 and RCH=C=CHR is surprising, since central protonation should yield a secondary carbonium ion compared to terminal protonation and formation of a vinyl cation. Perhaps a secondary carbonium ion destabilized by... [Pg.221]

In contrast to the behavior of tetramethylallene, allene 38 undergoes central protonation in electrophilic additions. In an acetic acid sulfuric acid... [Pg.222]

The orientation of addition of an unsymmetrical adduct, HY or XY, to an unsymmetrically substituted alkene will be defined by the preferential formation of the more stabilised carbanion, as seen above (cf. preferential formation of the more stabilised carbocation in electrophilic addition, p. 184). There is little evidence available about stereoselectivity in such nucleophilic additions to acyclic alkenes. Nucleophilic addition also occurs with suitable alkynes, generally more readily than with the corresponding alkenes. [Pg.199]

Gallo, 1983), and how the polar effects disappear totally this result is probably fortuitous and again due to the relationship between a and Es. It must therefore be concluded that parameter scales are inadequate to describe the kinetic influence of alkyl groups in bromination and in electrophilic additions in general. [Pg.247]

The concept of armed/disarmed glycosyl donors was subsequently extended by other groups to thioglycosides21 and selenoglycosides.64 A similar strategy has been used by Friesen and Danishefsky to achieve chemoselectivity in electrophilic addition to glycal double bonds.65... [Pg.109]

Substituent effects on the solvomercuration reaction differ markedly from those on many other electrophilic additions and these have been explained by assuming that the formation of the intermediate is often rate limiting in electrophilic additions whereas the reaction of the ionic intermediate with nucleophiles is rate limiting in solvomercuration147. In other words, the solvomercuration involves a fast pre-equilibrium formation of an intermediate, followed by rate-limiting attack of the nucleophile on this species. [Pg.626]

The synthesis of polyhalide salts, R4NX , used in electrophilic substitution reactions, are described in Chapter 2 and H-bonded complexed salts with the free acid, R4NHX2, which are used for example in acid-catalysed cleavage reactions and in electrophilic addition reactions with alkenes, are often produced in situ [33], although the fluorides are obtained by modification of method I.I.I.B. [19, 34], The in situ formation of such salts can inhibit normal nucleophilic reactions [35, 36]. Quaternary ammonium chlorometallates have been synthesized from quaternary ammonium chlorides and transition metal chlorides, such as IrClj and PtCl4, and are highly efficient catalysts for phase-transfer reactions and for metal complex promoted reactions [37]. [Pg.4]

Quaternary ammonium tribromides can also be produced in situ from the quaternary ammonium bromide, sodium hypochlorite and sodium bromide and can be used, for example, in electrophilic addition reactions reaction with alkenes and alkynes. [Pg.49]

Facial selectivity in electrophilic additions (carbene addition, mercuration, epoxi-dation, and hydroboration) to 4-substituted 9-methylenenorsnoutanes (1) as model alkenes has been elucidated and the observed preference for yyn-attack (Table 1)... [Pg.419]

Organic Reaction Mechanisms 1998 Table 1. Syn/anti ratio in electrophilic additional to (1)... [Pg.420]

The origin of stereofacial selectivity in electrophilic additions to methylene-cyclohexanes (2) and 5-methylene-l,3-dioxane (3) has been elucidated experimentally (Table 2) and theoretically. Ab initio calculations suggest that two electronic factors contribute to the experimentally observed axial stereoselectivity for polarizable electrophiles (in epoxidation and diimide reduction) the spatial anisotropy of the HOMO (common to both molecules) and the anisotropy in the electrostatic potential field (in the case of methylenedioxane). The anisotropy of the HOMO arises from the important topological difference between the contributions made to the HOMO by the periplanar p C-H a-bonds and opposing p C—O or C—C cr-bonds. In contrast, catalytic reduction proceeds with equatorial face selectivity for both the cyclohexane and the dioxane systems and appears to be governed largely by steric effects. ... [Pg.420]

Table 2. Axial/equational attack in electrophilic additions to (2) and (3)... Table 2. Axial/equational attack in electrophilic additions to (2) and (3)...
It is important to be able to look at a molecular structure and deduce the possible reactions it can undergo. Take an alkene, for example. It has a 7t bond that makes it electron-rich and able to attack electrophiles such as water, halogens and hydrogen halides in electrophilic addition reactions. Haloalkanes, on the other hand, contain polar carbon-halogen bonds because the halogen is more electronegative than carbon. This makes them susceptible to attack by nucleophiles, such as hydroxide, cyanide and alkoxide ions, in nucleophilic substitution reactions. [Pg.72]

Carbocations also feature as intermediates in electrophilic addition reactions (see Section 8.1) and in Friedel-Crafts alkylations (see Section 8.4.1). [Pg.217]

An isolated double bond is more reactive than an isolated triple bond in electrophilic additions, which accounts for the behavior of (A). If HBr had added to the double bond in (B), a butyne would have resulted. By HBr adding as it does, a more stable conjugated diene is formed. [Pg.164]

Vinyl ethers and amines disclose little tendency to revert to type thus, the intermediate formed by reaction with an electrophilic reagent reacts further by adding a nucleophilic species to yield an addition compound cf the sequence (8) — (11). Thiophene and pyrrole have a high degree of aromatic character consequently the initial product formed by reaction of thiophene or pyrrole with an electrophilic species subsequently loses a proton to give a substituted compound cf the reaction sequence (12) — (15). Furan has less aromatic character and often reacts by overall addition as well as by substitution. In electrophilic addition, the first step is the same as for substitution, i.e. the formation of a tr-complex (e.g. 13), but instead of losing a proton this now adds a nucleophile. [Pg.298]

Exercise 10-13 Explain how Markownikoff s rule for orientation in electrophilic additions can be accounted for in terms of the modern view of how these reactions occur, using the reaction of HCI with 1-methyicyclohexene as an example. [Pg.376]


See other pages where In electrophilic additions is mentioned: [Pg.269]    [Pg.339]    [Pg.129]    [Pg.119]    [Pg.222]    [Pg.243]    [Pg.167]    [Pg.487]    [Pg.638]    [Pg.62]    [Pg.4]    [Pg.529]    [Pg.1041]   
See also in sourсe #XX -- [ Pg.96 , Pg.292 ]




SEARCH



Carbocations in electrophilic addition

Rearrangement in electrophilic addition to alkenes

© 2024 chempedia.info