Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iminium ions, protonated

The protonated imine is the dominant reactive form. Although the protonated aldehyde is more reactive, its concentration is very low because it is much less basic than the imine or the reactant hydroxylamine. On the other hand, even though the aldehyde may be present in a greater concentration than the protonated imine, its reactivity is sufficiently less that the iminium ion is the major reactant. ... [Pg.462]

The tetrasubstituted isomer of the morpholine enamine of 2-methyl-cyclohexanone (20) because cf the diminished electronic overlap should be expected to exhibit lower degree of enamine-type reactivity toward electrophilic agents than the trisubstituted isomer. This was demonstrated to be the case when the treatment of the enamine with dilute acetic acid at room temperature resulted in the completely selective hydrolysis of the trisubstituted isomer within 5 min. The tetrasubstituted isomer was rather slow to react and was 96% hydrolyzed after 22 hr (77). The slowness might also be due to the intermediacy of quaternary iminium ion 23, which suffers from a severe. 4< strain 7,7a) between the equatorial C-2 methyl group and the methylene group adjacent to the nitrogen atom, 23 being formed by the stereoelectronically controlled axial protonation of 20. [Pg.9]

The formation of 88 is postulated to be occurring by the nucleophilic attack of a hydride ion (47), abstracted from the secondary amine, on the a-carbon atom of the iminium salt (89). The resulting carbonium ion (90) then loses a proton to give the imine (91), which could not be separated because of its instability (4H). In the case of 2-methyIhexamethylenimine, however, the corresponding dehydro compound /l -2-methylazacyclo-heptene (92) was isolated. The hydride addition to the iminium ion occurs from the less hindered exo side. [Pg.28]

The reduction of the double bond of an enamine is normally carried out either by catalytic hydrogenation (MS) or by reduction with formic acid (see Section V.H) or sodium borohydride 146,147), both of which involve initial protonation to form the iminium ion followed by hydride addition. Lithium aluminum hydride reduces iminium salts (see Chapter 5), but it does not react with free enamines except when unusual enamines are involved 148). [Pg.164]

Under acidic conditions, imine 12 is protonated to give the iminium ion 13 which undergoes an electrophilic aromatic substitution reaction to form the new carbon-carbon bond. Rapid loss of a proton and concomitant re-aromatization gives the tetrahydroisoquinoline 14. [Pg.470]

There have been extensive investigations on the reaction mechanism. In most cases the reaction proceeds via initial nucleophilic addition of ammonia 2 to formaldehyde 1 to give adduct 5, which is converted into an iminium ion species 6 (note that a resonance structure—an aminocarbenium ion can be formulated) through protonation and subsequent loss of water. The iminium ion species 6 then reacts with the enol 7 of the CH-acidic substrate by overall loss of a proton ... [Pg.194]

Reaction of an aldehyde or ketone with a secondary amine, R2NH, rather than a primary amine yields an enamine. The process is identical to imine formation up to the iminium ion stage, but at this point there is no proton on nitrogen that can be lost to form a neutral imine product. Instead, a proton is lost from the neighboring carbon (the a carbon), yielding an enamine (Figure 19.10). [Pg.713]

The reductive couphng of imines can follow different pathways, depending on the nature of the one-electron reducing agent (cathode, metal, low-valent metal salt), the presence of a protic or electrophihc reagent, and the experimental conditions (Scheme 2). Starting from the imine 7, the one-electron reduction is facihtated by the preliminary formation of the iminiiim ion 8 by protonation or reaction with an electrophile, e.g., trimethylsilyl (TMS) chloride. Alternatively, the radical anion 9 is first formed by direct reduction of the imine 7, followed by protonation or reaction with the electrophile, so giving the same intermediate a-amino radical 10. The 1,2-diamine 11 can be formed from the radical 10 by dimerization (and subsequent removal of the electrophile) or addition to the iminium ion 8, followed by one-electron reduction of the so formed aminyl radical. In certain cases/conditions the radical 9 can be further reduced to the carbanion 12, which then attacks the... [Pg.5]

The (3-carbon atom of an enamine is a nucleophilic site because of conjugation with the nitrogen atom. Protonation of enamines takes place at the (3-carbon, giving an iminium ion. [Pg.46]

Iminium ions are intermediates in a group of reactions that form ,( -unsaturated compounds having structures corresponding to those formed by mixed aldol addition followed by dehydration. These reactions are catalyzed by amines or buffer systems containing an amine and an acid and are referred to as Knoevenagel condensations,2U The reactive electrophile is probably the protonated form of the imine, since it is a more reactive electrophile than the corresponding carbonyl compound.212... [Pg.147]

MgS04, the tetracycles 2-648 were obtained with excellent diastereoselectivity in reasonable yield. The reaction presumably starts with a condensation of the aldehydes 2-645 with the benzyl-protected amine moiety of 2-644 to give an iminium ion which can subsequently cyclize to afford the spirocyclic intermediates 2-646. A [3,3] sigmatropic Cope rearrangement then forms the nine-membered cyclic enamines 2-647 which, after protonation, act as the starting point for another indole iminium cyclization to provide the tetracycles 2-648 via 2-647. [Pg.148]

Different rate-determining steps are observed for the acid-catalyzed hydration of vinyl ethers (alkene protonation, ks kp) and hydration of enamines (addition of solvent to an iminium ion intermediate, ks increasing stabilization of a-CH substituted carbocations by 71-electron donation from an adjacent electronegative atom results in a larger decrease in ks for nucleophile addition of solvent than in kp for deprotonation of the carbocation by solvent. [Pg.112]

In the presence of alcohols, the corresponding ethers are formed and added nucleophiles such as chloride ion40 or azide ion41 lead to the chloro- and azido-amine products, respectively. Rate constants are independent of the concentration of added nucleophile. Labelled 180 from the solvent is incorporated in the product42. All the evidence points to a reaction mechanism where water is lost from the O-protonated reactant to give a nitrenium ion-iminium ion intermediate which is rapidly trapped by a nucleophile (H2O in this case) to give the final product. This is shown in Scheme 7. Protonation at N- is likely to be more extensive, but there is no pathway to products from the N-protonated intermediate. [Pg.868]

A similar mechanism can be drawn if 08 is protonated first (not shown). Cleavage of the 08-C6 bond gives a C6 carbocation to which Oil adds. After cleavage of the N1-C6 bond, H+ transfer from C7 to C3 occurs to give an enol and an iminium ion. C7 then attacks C2, and elimination of the amine follows to give the products. [Pg.85]

Reductive cathodic amination of 2,5-hexanedione with ammonia and 1-pheny-lethylamine at the Hg cathode gave 2,5-dimethylpyrrolidines with satisfactory yields and excellent cis selectivity (90-98%). Other amines reacted less selectively to afford mixtures of pyrroles and diastereoisomeric pyrrolidines. A mechanism is proposed that involves the reduction of iminium ions, in which the stereoselectivity is controlled after the two le reductions of the cyclic iminium ion by the final protonation [350]. [Pg.438]

In Section 7.7.2 we met enamines as products from addition-elimination reactions of secondary amines with aldehydes or ketones. Enamines are formed instead of imines because no protons are available on nitrogen for the final deprotonation step, and the nearest proton that can be lost from the iminium ion is that at the P-position. [Pg.366]

A basic group removes a proton from the P-carbon of the iminium and forms the enamine. This enamine then reacts as a nucleophile towards the aldehyde group of glyceraldehyde 3-phosphate in a simple addition reaction, and the proton necessary for neutralizing the charge is obtained from an appropriately placed amino acid residue. Finally, the iminium ion loses a proton and hydrolysis releases the product from the enzyme. [Pg.369]

CuBr/QUINAP System The CuBr/QUlNAP system was initially used in the enan-tioselective synthesis of proparyl amines via the reaction of alkynes and enamines (Scheme 5.5). It was rationalized that the enamines reacted with protons in terminal alkynes in the presence of copper catalyst to form zwitterionic intermediates in which both the generated iminiums and alkyne anions coordinate to the copper metal center. After an intermolecular transfer of the alkyne moiety to the iminium ion, the desired products were released and the catalyst was regenerated. The combination of CuBr as catalyst and the chiral ligand QUEMAP is crucial for the good reactivities and enantioselectivities seen in the reaction. Another potential... [Pg.132]

Most enamines, unfortunately, are sensitive to hydrolysis. The parent enamine, iV,iV-dimethylvinylamine, has in fact been prepared [3], but appears to be unstable. Enamines of cyclic ketones and many aldehydes can readily be isolated, however [4-7]. The instability of enamines might at first appear to diminish the utility of enamines as nucleophiles, but actually this property can be viewed as an added benefit enamines can be readily and rapidly generated catalytically by using a suitable amine and a carbonyl compound. The condensation of aldehydes or ketones with amines initially affords an imine or iminium ion, which then rapidly loses a proton to afford the corresponding enamine (Scheme 1). [Pg.30]

The majority of transformations reported within the literature using the concept of LUMO energy lowering iminium ion activation have nsed secondary amines as the catalyst. Under the aqueous acidic reaction conditions inherent to this mode of activation it is also possible to nse primary amines as efficient catalysts where the active species is the protonated imine 141 (Fig. 13). Althongh this is a somewhat less explored avenne of research, initial results suggest it will become an equally fruitful area with broad application. [Pg.325]

The conjugate addition of nitroalkanes to a,P-unsaturated aldehydes (Sect. 2.2.2) has been investigated by Uggerud, who compared the uncatalysed, proton catalysed and iminium ion catalysed additions [232]. The results suggested that protonated acrolein was more activated towards addition than the iminium ion catalysed process and also indicated that an intermediate oxazolidin structure 183, unobserved experimentally, may be involved in the reaction pathway (Fig. 17) with the transition state resembling that of a [3+2] cycloaddition process. [Pg.338]

Mechanistically, the Brpnsted acid-catalyzed cascade hydrogenation of quinolines presumably proceeds via the formation of quinolinium ion 56 and subsequent 1,4-hydride addition (step 1) to afford enamine 57. Protonation (step 2) of the latter (57) followed by 1,2-hydride addition (step 3) to the intermediate iminium ion 58 yields tetrahydroquinolines 59 (Scheme 21). In the case of 2-substituted precursors enantioselectivity is induced by an asymmetric hydride transfer (step 3), whereas for 3-substituted ones asymmetric induction is achieved by an enantioselective proton transfer (step 2). [Pg.413]


See other pages where Iminium ions, protonated is mentioned: [Pg.461]    [Pg.481]    [Pg.471]    [Pg.710]    [Pg.1147]    [Pg.1163]    [Pg.1512]    [Pg.6]    [Pg.403]    [Pg.70]    [Pg.117]    [Pg.795]    [Pg.108]    [Pg.108]    [Pg.129]    [Pg.132]    [Pg.48]    [Pg.59]    [Pg.824]    [Pg.213]    [Pg.284]    [Pg.371]    [Pg.606]    [Pg.37]    [Pg.285]    [Pg.313]    [Pg.337]    [Pg.435]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



Iminium ion

Proton ions

Protonated ions

© 2024 chempedia.info