Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ideal gases irreversible adiabatic expansion

Points a and b in Figure 6.7 represent the initial and final states of an irreversible adiabatic expansion of an ideal gas. The path between is not represented because the temperature has no well-defined value in such a change different parts of the system may have different temperatures. The inhomogeneities in the system that develop during the irreversible change do not disappear until a new equilibrium is reached at b. [Pg.135]

A reversible adiabatic expansion of an ideal gas has a zero entropy change, and an irreversible adiabatic expansion of the same gas from the same initial state to the same final volume has a positive entropy change. This statement may seem to be inconsistent with the statement that 5 is a thermodynamic property. The resolution of the discrepancy is that the two changes do not constitute the same change of state the final temperature of the reversible adiabatic expansion is lower than the final temperature of the irreversible adiabatic expansion (as in path 2 in Fig. 6.7). [Pg.136]

It suffices to carry out one such experiment, such as the expansion or compression of a gas, to establish that there are states inaccessible by adiabatic reversible paths, indeed even by any adiabatic irreversible path. For example, if one takes one mole of N2 gas in a volume of 24 litres at a pressure of 1.00 atm (i.e. at 25 °C), there is no combination of adiabatic reversible paths that can bring the system to a final state with the same volume and a different temperature. A higher temperature (on the ideal-gas scale Oj ) can be reached by an adiabatic irreversible path, e.g. by doing electrical work on the system, but a state with the same volume and a lower temperature Oj is inaccessible by any adiabatic path. [Pg.335]

Figure 15.5 shows the ideal open cycle for the gas turbine that is based on the Brayton Cycle. By assuming that the chemical energy released on combustion is equivalent to a transfer of heat at constant pressure to a working fluid of constant specific heat, this simplified approach allows the actual process to be compared with the ideal, and is represented in Figure 15.5 by a broken line. The processes for compression 1-2 and expansion 3-4 are irreversible adiabatic and differ, as shown from the ideal isentropic processes between the same pressures P and P2 -... [Pg.179]

The expansion of an ideal gas in the Joule experiment will be used as a simple example. Consider a quantity of an ideal gas confined in a flask at a given temperature and pressure. This flask is connected through a valve to another flask, which is evacuated. The two flasks are surrounded by an adiabatic envelope and, because the walls of the flasks are rigid, the system is isolated. We now allow the gas to expand irreversibly into the evacuated flask. For an ideal gas the temperature remains the same. Thus, the expansion is isothermal as well as adiabatic. We can return the system to its original state by carrying out an isothermal reversible compression. Here we use a work reservoir to compress the gas and a heat reservoir to remove heat from the gas. As we have seen before, a quantity of heat equal to the work done on the gas must be transferred from the gas to the heat reservoir. In so doing, the value of the entropy function of the heat reservoir is increased. Consequently, the value of the entropy function of the gas increased during the adiabatic irreversible expansion of gas. [Pg.44]

Consider the free, isothermal (constant T) expansion of an ideal gas. Free means that the external force is zero, perhaps because a stopcock has been opened and the gas is allowed to expand into a vacuum. Calculate AU for this irreversible process. Show that q = 0,so that the expansion is also adiabatic [q = 0) for an ideal gas. This is analogous to a classic experiment first performed by Joule. [Pg.523]


See other pages where Ideal gases irreversible adiabatic expansion is mentioned: [Pg.37]    [Pg.384]    [Pg.135]    [Pg.99]    [Pg.99]    [Pg.64]    [Pg.58]   


SEARCH



Adiabatic expansion

Ideal gas expansion

Irreversible adiabatic expansion

Irreversible expansion

© 2024 chempedia.info