Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis—triple-layer model

To be useful in modeling electrolyte sorption, a theory needs to describe hydrolysis and the mineral surface, account for electrical charge there, and provide for mass balance on the sorbing sites. In addition, an internally consistent and sufficiently broad database of sorption reactions should accompany the theory. Of the approaches available, a class known as surface complexation models (e.g., Adamson, 1976 Stumm, 1992) reflect such an ideal most closely. This class includes the double layer model (also known as the diffuse layer model) and the triple layer model (e.g., Westall and Hohl, 1980 Sverjensky, 1993). [Pg.155]

Diprotic Surface Groups. Most of the recent research on surface hydrolysis reactions has been interpreted in terms of the diprotic surface hydrolysis model with either the triple layer model or the constant capacitance model of the electric double layer. The example presented here is cast in terms of the constant capacitance model, but the conclusions which are drawn apply for the triple layer model as well. [Pg.68]

The models describing hydrolysis and adsorption on oxide surfaces are called surface complexation models in literature. They differ in the assumptions concerning the structure of the double electrical layer, i.e. in the definition of planes situation, where adsorbed ions are located and equations asociating the surface potential with surface charge (t/> = f(5)). The most important models are presented in the papers by Westall and Hohl [102]. Tbe most commonly used is the triple layer model proposed by Davis et al. [103-105] from conceptualization of the electrical double layer discussed by Yates et al. [106] and by Chan et al. [107]. Reviews and representative applications of this model have been given by Davis and Leckie [108] and by Morel et al. [109]. We will base our consideration on this model. [Pg.382]

Gouy-Chapman, Stern, and triple layer). Methods which have been used for determining thermodynamic constants from experimental data for surface hydrolysis reactions are examined critically. One method of linear extrapolation of the logarithm of the activity quotient to zero surface charge is shown to bias the values which are obtained for the intrinsic acidity constants of the diprotic surface groups. The advantages of a simple model based on monoprotic surface groups and a Stern model of the electric double layer are discussed. The model is physically plausible, and mathematically consistent with adsorption and surface potential data. [Pg.54]

Finally, we demonstrate the application of our general formulation of surface/solution equilibria to a more involved model of the surface/ solution interface, the triple-layer site-binding model of Yates, Levine, and Healy. Again we discuss the principles of the method using simple hydrolysis equilibria, but the extension to more complicated equilibria is straightforward. [Pg.39]


See other pages where Hydrolysis—triple-layer model is mentioned: [Pg.10]    [Pg.183]   


SEARCH



HYDROLYSIS MODEL

Layer model

Layered models

Models layer model

Triple layers

Triple-layer model

© 2024 chempedia.info