Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis Reaction Mechanisms

PM3 and SM3-PM3 semiempirical MO study of die conventional S 2 hydrolysis and neighbouring-group hydrolysis reaction mechanisms in die gas phase and in aqueous solution for 2,2,-dichlorodiethyl sulfide has been described.93 The calculations predict substantially faster reactions in aqueous solution, with the neighbouring-group mechanism always being preferred. Various other details of the mechanisms were elucidated. [Pg.315]

The base-catalysed ester hydrolysis reaction mechanism is outlined in Fig. 5.3." This reaction has an irreversible acyl-oxygen cleavage mechanism, and the slow stage is the attack of the ester by the OH . [Pg.101]

Ortuoste N, Allen NS, Papanastasiou M, McMahon A, Edge M, Johnson B, Keck-Antoine K. Hydrolytic stability and hydrolysis reaction mechanism of bis(2,4-di-tert-butyl)pentaeryth-ritol diphosphite (Alkanox P-24). Polym Degrad Stab 2006 91 195-211. [Pg.417]

At the catalytic domain of the HAase, there is a conserved DXE(D) motif stabilizing an oxazolinium-ion intermediate (or transition state), and hence the hydrolysis reaction mechanism is considered to be similar to that of chitinases. These observations are in accord with the concept of TSAS monomer, strongly suggesting that two EROPA reactions of Schemes 38 and 39 occur via an oxazolinium transition state. [Pg.414]

Zigmond, 1988). The ATP-hydrolysis that accompanies actin polymerization, ATP —> ADP + Pj, and the subsequent release of the cleaved phosphate (Pj) are believed to act as a clock (Pollard et ah, 1992 Allen et ah, 1996), altering in a time-dependent manner the mechanical properties of the filament and its propensity to depolymerize. Molecular dynamics simulations suggested a so-called back door mechanism for the hydrolysis reaction ATP ADP - - Pj in which ATP enters the actin from one side, ADP leaves from the same side, but Pj leaves from the opposite side, the back door (Wriggers and Schulten, 1997b). This hypothesis can explain the effect of the toxin phalloidin which blocks the exit of the putative back door pathway and, thereby, delays Pi release as observed experimentally (Dancker and Hess, 1990). [Pg.47]

Cation (Section 1 2) Positively charged ion Cellobiose (Section 25 14) A disacchande in which two glu cose units are joined by a 3(1 4) linkage Cellobiose is oh tamed by the hydrolysis of cellulose Cellulose (Section 25 15) A polysaccharide in which thou sands of glucose units are joined by 3(1 4) linkages Center of symmetry (Section 7 3) A point in the center of a structure located so that a line drawn from it to any element of the structure when extended an equal distance in the op posite direction encounters an identical element Benzene for example has a center of symmetry Cham reaction (Section 4 17) Reaction mechanism m which a sequence of individual steps repeats itself many times usu ally because a reactive intermediate consumed m one step is regenerated m a subsequent step The halogenation of alkanes is a chain reaction proceeding via free radical intermediates... [Pg.1278]

The kinetics of hydrolysis reactions maybe first-order or second-order, depending on the reaction mechanism. However, second-order reactions may appear to be first-order, ie, pseudo-first-order, if one of the reactants is not consumed in the reaction, eg, OH , or if the concentration of active catalyst, eg, reduced transition metal, is a small fraction of the total catalyst concentration. [Pg.218]

Studies of reaction mechanisms ia O-enriched water show the foUowiag cleavage of dialkyl sulfates is primarily at the C—O bond under alkaline and acid conditions, and monoalkyl sulfates cleave at the C—O bond under alkaline conditions and at the S—O bond under acid conditions (45,54). An optically active half ester (j -butyl sulfate [3004-76-0]) hydroly2es at 100°C with iaversion under alkaline conditions and with retention plus some racemization under acid conditions (55). Effects of solvent and substituted stmcture have been studied, with moist dioxane giving marked rate enhancement (44,56,57). Hydrolysis of monophenyl sulfate [4074-56-0] has been similarly examined (58). [Pg.199]

By changing Ser 221 in subtilisin to Ala the reaction rate (both kcat and kcat/Km) is reduced by a factor of about 10 compared with the wild-type enzyme. The Km value and, by inference, the initial binding of substrate are essentially unchanged. This mutation prevents formation of the covalent bond with the substrate and therefore abolishes the reaction mechanism outlined in Figure 11.5. When the Ser 221 to Ala mutant is further mutated by changes of His 64 to Ala or Asp 32 to Ala or both, as expected there is no effect on the catalytic reaction rate, since the reaction mechanism that involves the catalytic triad is no longer in operation. However, the enzyme still has an appreciable catalytic effect peptide hydrolysis is still about 10 -10 times the nonenzymatic rate. Whatever the reaction mechanism... [Pg.217]

The mechanism of this hydrolysis reaction has been studied in great detail. Tb mechanism is the reverse of that for acetal or ketal formation. [Pg.452]

A catalyst is defined as a substance that influences the rate or the direction of a chemical reaction without being consumed. Homogeneous catalytic processes are where the catalyst is dissolved in a liquid reaction medium. The varieties of chemical species that may act as homogeneous catalysts include anions, cations, neutral species, enzymes, and association complexes. In acid-base catalysis, one step in the reaction mechanism consists of a proton transfer between the catalyst and the substrate. The protonated reactant species or intermediate further reacts with either another species in the solution or by a decomposition process. Table 1-1 shows typical reactions of an acid-base catalysis. An example of an acid-base catalysis in solution is hydrolysis of esters by acids. [Pg.26]

DNA is not susceptible to alkaline hydrolysis. On the other hand, RNA is alkali labile and is readily hydrolyzed by dilute sodium hydroxide. Cleavage is random in RNA, and the ultimate products are a mixture of nucleoside 2 - and 3 -monophosphates. These products provide a clue to the reaction mechanism (Figure 11.29). Abstraction of the 2 -OH hydrogen by hydroxyl anion leaves a 2 -0 that carries out a nucleophilic attack on the phosphorus atom of the phosphate moiety, resulting in cleavage of the 5 -phosphodiester bond and formation of a cyclic 2, 3 -phosphate. This cyclic 2, 3 -phosphodiester is unstable and decomposes randomly to either a 2 - or 3 -phosphate ester. DNA has no 2 -OH therefore DNA is alkali stable. [Pg.347]

In all the reactions described so far a chiral Lewis acid has been employed to promote the Diels-Alder reaction, but recently a completely different methodology for the asymmetric Diels-Alder reaction has been published. MacMillan and coworkers reported that the chiral secondary amine 40 catalyzes the Diels-Alder reaction between a,/ -unsaturated aldehydes and a variety of dienes [59]. The reaction mechanism is shown in Scheme 1.73. An a,/ -unsaturated aldehyde reacts with the chiral amine 40 to give an iminium ion that is sufficiently activated to engage a diene reaction partner. Diels-Alder reaction leads to a new iminium ion, which upon hydrolysis af-... [Pg.46]

Acid-catalyzed ester hydrolysis can occur by more than one mechanism, depending on the structure of the ester. The usual pathway, however, is just the reverse of a Fischer esterification reaction (Section 21.3). The ester is first activated toward nucleophilic attack by protonation of the carboxyl oxygen atom, and nucleophilic addition of water then occurs. Transfer of a proton and elimination of alcohol yields the carboxylic acid (Figure 21.8). Because this hydrolysis reaction is the reverse of a Fischer esterification reaction, Figure 21.8 is the reverse of Figure 21.4. [Pg.809]

Conversion of Amides into Carboxylic Acids Hydrolysis Amides undergo hydrolysis to yield carboxylic acids plus ammonia or an amine on heating in either aqueous acid or aqueous base. The conditions required for amide hydrolysis are more severe than those required for the hydrolysis of add chlorides or esters but the mechanisms are similar. Acidic hydrolysis reaction occurs by nucleophilic addition of water to the protonated amide, followed by transfer of a proton from oxygen to nitrogen to make the nitrogen a better leaving group and subsequent elimination. The steps are reversible, with the equilibrium shifted toward product by protonation of NH3 in the final step. [Pg.814]

Interestingly, however, the mechanisms of the two phosphate hydrolysis reactions in steps 9 and 11 are not the same. In step 9, water is the nucleophile, but in the glucose 6-phosphate reaction of step 11, a histidine residue on the enzyme attacks phosphorus, giving a phosphoryl enzyme intermediate that subsequently reacts with water. [Pg.1164]

The reaction under investigation is the enzymatic hydrolysis of racemic ethoxyethyl-ibuprofen ester. The (R)-ester is not active in the above reaction,1-3, thus simplifying the reaction mechanism, as shown in Figure 5.13. Because both enantiomers are converted according to fust-order kinetics, the conversion of one enantiomer is independent of the conversion of the other.4... [Pg.130]

The Ingold248 classification of esterification and hydrolysis reactions is reported in Table 4. Basic compounds are seldom used as catalysts for esterifications, at least in diluted media. Thus, in Table 4 all arrows are oriented right to left. However, some authors (Naudet193, Kutepov27 ) carried out base-catalyzed esterifications in concentrated media and proposed mechanisms. [Pg.72]

The mechanisms by which Pu(IV) is oxidized in aquatic environments is not entirely clear. At Oak Ridge, laboratory experiments have shown that oxidation occurs when small volumes of unhydrolyzed Pu(IV) species (i.e., Pu(IV) in strong acid solution as a citric acid complex or in 45 percent Na2Coj) are added to large volumes of neutral-to-alkaline solutions(23). In repeated experiments, the ratios of oxidized to reduced species were not reproducible after dilution/hydrolysis, nor did the ratios of the oxidation states come to any equilibrium concentrations after two months of observation. These results indicate that rapid oxidation probably occurs at some step in the hydrolysis of reduced plutonium, but that this oxidation was not experimentally controllable. The subsequent failure of the various experimental solutions to converge to similar high ratios of Pu(V+VI)/Pu(III+IV) demonstrated that the rate of oxidation is extremely slow after Pu(IV) hydrolysis reactions are complete. [Pg.303]

A chemist is studying the mechanism of the following hydrolysis reaction of the organic ester methyl acetate CH.COOCI I, + H,0 - CH,COOH + CH,OH. The question arises whether the O atom in the product methanol comes from the methyl acetate or from the water. Propose an experiment using isotopes that would allow the chemist to determine the origin of the oxygen atom. [Pg.845]

To gain an insight into the likely hydrolytic behavior of sulfated simple sugars and polysaccharides, Brimacombe, Foster, Hancock, Overend, and Stacey carried out a rigorous set of experiments with the cyclic sulfates of cyclohexane cis-and trims-1,2-diol as model compounds. The results were interpreted on the reasonable assumption that, in all cases, the cyclic sulfates initially afford a diol monosulfate. Examples of both S-0 and C-0 bond cleavage were encountered. A qualitative reaction mechanism was proposed for use as a working hypothesis for the hydrolysis of sugar sulfates. [Pg.16]

Fluoboric acid is also an efficacious promoter of cyclic oxo-carbenium ions (Scheme 4.24) bearing an activated double bond which, in the presence of open-chain and cyclic dienes, rapidly undergo a Diels-Alder reaction [91]. Chiral a, -unsaturated ketones bearing a -hydroxy substituents, protected as acetals, react with various dienes in the presence of HBF4, affording Diels-Alder adducts that were isolated as alcohols by hydrolysis of the acetal group by TsOH. Some examples of reactions with isoprene are reported in Table 4.23. The enantios-electivity of the reaction is dependent on the size of the substituent R on the of-carbon high levels of asymmetric induction were observed with R = z-Pr (90 1) and R = t-Bu (150 1) and low levels with R = Me (2.7 1) and R = Ph (3.0 1). Scheme 4.24 shows the postulated reaction mechanism. [Pg.187]


See other pages where Hydrolysis Reaction Mechanisms is mentioned: [Pg.64]    [Pg.205]    [Pg.124]    [Pg.339]    [Pg.107]    [Pg.569]    [Pg.57]    [Pg.67]    [Pg.64]    [Pg.205]    [Pg.124]    [Pg.339]    [Pg.107]    [Pg.569]    [Pg.57]    [Pg.67]    [Pg.609]    [Pg.53]    [Pg.6]    [Pg.26]    [Pg.218]    [Pg.228]    [Pg.824]    [Pg.455]    [Pg.199]    [Pg.1056]    [Pg.1057]    [Pg.1164]    [Pg.1164]    [Pg.5]    [Pg.66]    [Pg.207]   


SEARCH



Hydrolysis reactions

Mechanism hydrolysis

© 2024 chempedia.info