Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis functional groups

The oxidation of higher alkenes in organic solvents proceeds under almost neutral conditions, and hence many functional groups such as ester or lac-tone[26,56-59], sulfonate[60], aldehyde[61-63], acetal[60], MOM ether[64], car-bobenzoxy[65], /-allylic alcohol[66], bromide[67,68], tertiary amine[69], and phenylselenide[70] can be tolerated. Partial hydrolysis of THP ether[71] and silyl ethers under certain conditions was reported. Alcohols are oxidized with Pd(II)[72-74] but the oxidation is slower than the oxidation of terminal alkenes and gives no problem when alcohols are used as solvents[75,76]. [Pg.24]

This chapter differs from preceding ones in that it deals with several related classes of compounds rather than just one Although the compounds may encompass sev eral functional group types they share the common feature of yielding carboxylic acids on hydrolysis and for this reason are called carboxylic acid derivatives... [Pg.830]

Postreactions of polyacrylamide to iatroduce anionic, cationic, or other functional groups are often attractive from a cost standpoiat. This approach can suffer, however, from side reactions resulting ia cross-linking or the iatroduction of unwanted functionahty, such as carboxyl groups from hydrolysis. [Pg.140]

The principal monomer is acrylamide [79-06-17, where R = H and R = NH2, made by the hydrolysis of acrylonitrile. The homopolymer [9003-05-8] of acrylamide, which in theory has no electrical charge, has some use as a flocculant however, the majority of acrylamide-based flocculants are copolymers with acryHc monomers containing charged functional groups, such as those shown in Figure 1, or polymers containing functional groups formed by modification of acrylamide homopolymers or copolymers (Fig. 2). The chemistry of polyacrylamides has been reviewed by several authors (18—20) (see... [Pg.32]

Fig. 2. Functional groups on modified polyacrylamides (a) formed by reaction with dimethylamine and formaldehyde (Mannich reaction) (b), quatemized Mannich amine (c), carboxylate formed by acid or base-cataly2ed hydrolysis or copolymerization with sodium acrylate and (d), hydroxamate formed by... Fig. 2. Functional groups on modified polyacrylamides (a) formed by reaction with dimethylamine and formaldehyde (Mannich reaction) (b), quatemized Mannich amine (c), carboxylate formed by acid or base-cataly2ed hydrolysis or copolymerization with sodium acrylate and (d), hydroxamate formed by...
Historically, simple Vz-alkyl ethers formed from a phenol and a halide or sulfate were cleaved under rather drastic conditions (e.g., refluxing HBr). New ether protective groups have been developed that are removed under much milder conditions (e.g., via nucleophilic displacement, hydrogenolysis of benzyl ethers, and mild acid hydrolysis of acetal-type ethers) that seldom affect other functional groups in a molecule. [Pg.145]

As was the case for kinetic resolution of enantiomers, enzymes typically exhibit a high degree of selectivity toward enantiotopic reaction sites. Selective reactions of enaiitiotopic groups provide enantiomerically enriched products. Thus, the treatment of an achiral material containing two enantiotopic functional groups is a means of obtaining enantiomerically enriched material. Most successful examples reported to date have involved hydrolysis. Several examples are outlined in Scheme 2.11. [Pg.107]

Many functional groups are stable to alkaline hydrogen peroxide. Acetate esters are usually hydrolyzed under the reaction conditions although methods have been developed to prevent hydrolysis.For the preparation of the 4,5-oxiranes of desoxycorticosterone, hydrocortisone, and cortisone, the alkali-sensitive ketol side chains must be protected with a base-resistant group, e.g., the tetrahydropyranyl ether or the ethylene ketal derivative. Sodium carbonate has been used successfully as a base with unprotected ketol side chains, but it should be noted that some ketols are sensitive to sodium carbonate in the absence of hydrogen peroxide. The spiroketal side chain of the sapogenins is stable to the basic reaction conditions. [Pg.14]

Despite the variability of yields often noted by various workers, the reaction is extremely simple to perform and remarkably insensitive to the presence of other functional groups. Thus, systems which do not interfere markedly include S-keto-A, S-keto-A , 3a- or 17a-hydroxy, ll-keto, 12-keto, 6-methyl,16-methyl, 16-methylene, 3-hydroxy-A , 16,17-epoxy, 3-keto-A -6-methyl, ll)5-hydroxy, and 10-cyano. In one instance, hydrolysis of a 3-acetate during the first step has been reported. ... [Pg.206]

A large number of silylating agents exist for the introduction of the trimethylsilyl group onto a variety of alcohols. In general, the sterically least hindered alcohols are the most readily silylated, but are also the most labile to hydrolysis with either acid or base. Trimethylsilylation is used extensively for the derivatization of most functional groups to increase their volatility for gas chromatography and mass spectrometry. [Pg.116]

Under basic conditions, the o-nitrotoluene (5) undergoes condensation with ethyl oxalate (2) to provide the a-ketoester 6. After hydrolysis of the ester functional group, the nitro moiety in 7 is then reduced to an amino function, which reacts with the carbonyl group to provide the cyclized intermediate 13. Aromatization of 13 by loss of water gives the indole-2-carboxylic acid (9). [Pg.154]

Azaloxan (12) is an antidepressant agent. Its synthesis can be accomplished starting with the reaction of catechol (7) and 3,4-dibromobutyronitrile (obtained by addition of bromine to the olefin) to give l,4-benzodioxan-2-ylacetonitrile (8). A series of functional group transformations ensues [hydrolysis to the acid (9), reduction to the alcohol (10) and conversion to a tosylate (11)] culminating in an SN-2 displacement reaction on tosylate 11 with l-(4-piperidinyl)-2-imidazolidi-none to give azaloxan (12) [3]. [Pg.138]

The synthetic challenge is now reduced to the preparation of intermediates 2-4. Although intermediates 3 and 4 could potentially be derived in short order from very simple precursors (see Scheme 4), intermediate 2 is rather complex, particularly with respect to stereochemistry. Through a short sequence of conventional functional group manipulations, it is conceivable that aldehyde 2 could be derived from intermediate 9. Hydrolysis and keta-lization reactions could then permit the formation of 9 from intermediate 11, the cyclic hemiaminal of the highly stereo-defined acyclic molecule, intermediate 12. [Pg.322]

Arylboronic acids have traditionally been prepared via the addition of an organomagnesium or organolithium intermediate to a trialkyl borate. Subsequent acidic hydrolysis produces the free arylboronic acid. This limits the type of arylboronic acids one can access via this method, as many functional groups are not compatible with the conditions necessary to generate the required organometallic species, or these species may not be stable intermediates. [Pg.70]


See other pages where Hydrolysis functional groups is mentioned: [Pg.277]    [Pg.277]    [Pg.393]    [Pg.502]    [Pg.1291]    [Pg.82]    [Pg.217]    [Pg.207]    [Pg.387]    [Pg.479]    [Pg.59]    [Pg.218]    [Pg.254]    [Pg.324]    [Pg.4]    [Pg.77]    [Pg.682]    [Pg.13]    [Pg.11]    [Pg.164]    [Pg.70]    [Pg.4]    [Pg.127]    [Pg.229]    [Pg.214]    [Pg.45]    [Pg.764]    [Pg.165]    [Pg.108]    [Pg.148]    [Pg.182]    [Pg.207]    [Pg.490]    [Pg.538]    [Pg.108]    [Pg.227]   
See also in sourсe #XX -- [ Pg.218 ]




SEARCH



© 2024 chempedia.info