Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrologic Evaluation of Landfill Performance

Numerical models are used to predict the performance and assist in the design of final cover systems. The availability of models used to conduct water balance analyses of ET cover systems is currently limited, and the results can be inconsistent. For example, models such as Hydrologic Evaluation of Landfill Performance (HELP) and Unsaturated Soil Water and Heat Flow (UNSAT-H) do not address all of the factors related to ET cover system performance. These models, for instance, do not consider percolation through preferential pathways may underestimate or overestimate percolation and have different levels of detail regarding weather, soil, and vegetation. In addition, HELP does not account for physical processes, such as matric potential, that generally govern unsaturated flow in ET covers.39 42 47... [Pg.1064]

Schroeder, P.R., Dozier, T.S., Zappi, P.A., McEnroe, B.M., Sjostrom J.W., and Peyton, R.L., The Hydrologic Evaluation of Landfill Performance (HELP) Model Engineering Documentation for Version 3, EPA/600/R-94/168b, U.S. Environmental Protection Agency, Cincinnati, OH, 1994. [Pg.1090]

This approach has been used in the well-known model HELP (Hydrological Evaluation of Landfill Performance, Schroeder et al. 1994) and a number of complementary models (Nixon et al. 1997). These models mostly assume the landfilled material to be idealized layers with homogenous properties. One such model, HYDRUS, has been used to model flow through Landfill Lostorf, but it was found that it could not fully catch the dynamics of flow, particularly after rain events (Johnson et al. 2001). Water passes through the... [Pg.608]

HELP HEU HFO HFR HLW HREE HRL HT HTGR HWR Hydrological evaluation of landfill performance Highly enriched uranium Hydrous ferrous oxide or ferric hydroxide Hot fractured-rock High-level nuclear waste Heavy rare earth elements (Gd-Lu) Hard rock laboratory High temperature High-temperature gas-cooled reactor Heavy water reactor... [Pg.684]

The ET cover cannot be tested at every landfill site so it is necessary to extrapolate the results from sites of known performance to specific landfill sites. The factors that affect the hydrologic design of ET covers encompass several scientific disciplines and there are numerous interactions between factors. As a consequence, a comprehensive computer model is needed to evaluate the ET cover for a site.48 The model should effectively incorporate soil, plant, and climate variables, and include their interactions and the resultant effect on hydrology and water balance. An important function of the model is to simulate the variability of performance in response to climate variability and to evaluate cover response to extreme events. Because the expected life of the cover is decades, possibly centuries, the model should be capable of estimating long-term performance. In addition to a complete water balance, the model should be capable of estimating long-term plant biomass production, need for fertilizer, wind and water erosion, and possible loss of primary plant nutrients from the ecosystem. [Pg.1064]


See other pages where Hydrologic Evaluation of Landfill Performance is mentioned: [Pg.573]    [Pg.585]    [Pg.1087]    [Pg.1090]    [Pg.1152]    [Pg.617]    [Pg.573]    [Pg.585]    [Pg.1087]    [Pg.1090]    [Pg.1152]    [Pg.617]    [Pg.1081]    [Pg.1138]    [Pg.134]   


SEARCH



Evaluation of performance

Hydrologic

Hydrologic Evaluation of Landfill Performance HELP)

Hydrology

Landfilling

Landfills

© 2024 chempedia.info