Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen theoretical calculations

Figure Bl.4.9. Top rotation-tunnelling hyperfine structure in one of the flipping inodes of (020)3 near 3 THz. The small splittings seen in the Q-branch transitions are induced by the bound-free hydrogen atom tiiimelling by the water monomers. Bottom the low-frequency torsional mode structure of the water duner spectrum, includmg a detailed comparison of theoretical calculations of the dynamics with those observed experimentally [ ]. The symbols next to the arrows depict the parallel (A k= 0) versus perpendicular (A = 1) nature of the selection rules in the pseudorotation manifold. Figure Bl.4.9. Top rotation-tunnelling hyperfine structure in one of the flipping inodes of (020)3 near 3 THz. The small splittings seen in the Q-branch transitions are induced by the bound-free hydrogen atom tiiimelling by the water monomers. Bottom the low-frequency torsional mode structure of the water duner spectrum, includmg a detailed comparison of theoretical calculations of the dynamics with those observed experimentally [ ]. The symbols next to the arrows depict the parallel (A k= 0) versus perpendicular (A = 1) nature of the selection rules in the pseudorotation manifold.
This result indicates that in strictly theoretical calculations, the f functions may almost as well be omitted unless they can be optimized for the London energy itself. For the purpose of semi-empirical calculations, however, the /A functions from the polarizability must be retained for the substitution in the London energy. The error for hydrogen atoms is only about 4 per cent, however, and there does not appear to be any reason that it would increase greatly in more complex systems. [Pg.65]

H2S2 (hydrogenpersulfide), the smallest member of the polysulfane series [15], has been studied extensively by molecular spectroscopy and theoretical calculations [16] (and references therein). By now, accurate knowledge of its structure, torsional potential and vibrational modes has been established. Ab initio calculations readily reproduce these properties [17]. The value of the SSH angle in hydrogen disulfide was a subject of controversies for some time. However, recent experiments led to a different value which is in favour of the ab initio calculated value [17]. [Pg.4]

Interestingly, the sulfanes H2S are both proton acceptors and donors. In the first case sulfonium ions H3S are formed, in the second case hydrogen polysulfide anions HS are the result. While the latter have never been isolated in salts, several salts with sulfonium cations derived from the sulfanes with n = 1, 2, and 4 have been published. However, none of these salts has been structurally characterized by a diffraction technique. Therefore, the structures of the HsSn cations and HS anions are known from theoretical calculations only. [Pg.118]

This is the first example of a proton transfer process to a hydride complex with a second-order dependence. Theoretical calculations indicate that the role of the HX molecules is the formation of W-H H-Cl- H-Cl adducts that convert into W-Cl, H2 and HCl2 in the rate-determining state through hydrogen complexes as transition states. [Pg.113]

If the percent yield of a reaction is already known, we can calculate how much of a product to expect from a synthesis that uses a known amount of starting material. For example, the Haber synthesis of ammonia stops when 13% of the starting materials have formed products. Knowing this, how much ammonia could an industrial producer expect to make from 2.0 metric tons of molecular hydrogen First, calculate the theoretical yield ... [Pg.213]

Although this type of reaction is symmetry forbidden in an unadsorbed molecule, theoretical calculations showed that in a molecule adsorbed on transition metals, such a shift is allowed [3-5], Later, other theoretical calculations suggested another type of 1,3-hydrogen shift, one in which the allylic cxo-hydrogen is abstracted by the surface fi-om an adsorbed alkene (either 1,2-diadsorbed or n-complexed) and the resulting 7i-allyl species moves over the abstracted hydrogen in such a way that it adds to the former vinylic position and causes, in effect, a stepwise intramolecular 1,3-hydrogen shift (bottom shift) [6],... [Pg.252]

A reaction mechanism in which the precursor polymer undergoes a redox reaction followed by loss of the bridge hydrogens is proposed. The resulting conjugated aromatic/quinonoid polymers generally have very small semiconductor band gaps in accord with predictions of recent theoretical calculations. [Pg.443]

Bases stacked rather than hydrogen bonded have also been studied with quantum chemical methods [182, 244-247]. The nature of excited states in these systems has been debated and theoretical calculations are called to decide on the degree of excited state localization or delocalization, as well as the presence and energy of charge transfer states. The experimentally observed hypochromism of DNA compared to its individual bases has been known for decades [248], Accurate quantum chemical calculations are limited in these systems because of their increased size. Many of the reported studies have used TDDFT to calculate excited states of bases stacked with other bases [182, 244, 246, 247], However, one has to be cautious when us-... [Pg.324]

An alternative mechanism for double bond migration has recently been proposed by Smith (Fig. 2.12).113 It is based in part on theoretical calculations,114 in part on the recent surface science work suggesting that hydrogen occupies threefold hollows,115 and in part on the experimental observation that during hydrogenation an allylic deuterium moves 1-3 across the bottom of an adsorbed allylic system without being exchanged.116... [Pg.48]

Pullman and co-workers49 performed theoretical calculations on lexitropsins, using empirical methods, and concluded that the binding of the drug to DNA is not only due to hydrogen bonding but also to electrostatic effects, mainly the interaction between the elec-... [Pg.168]

Meregalli, V., M. Parrinello, Review of theoretical calculations of hydrogen storage in carbon-based materials. Appl. Phys. A 11,143-146,2001. [Pg.434]


See other pages where Hydrogen theoretical calculations is mentioned: [Pg.248]    [Pg.116]    [Pg.248]    [Pg.116]    [Pg.717]    [Pg.1145]    [Pg.50]    [Pg.513]    [Pg.621]    [Pg.676]    [Pg.57]    [Pg.324]    [Pg.33]    [Pg.53]    [Pg.153]    [Pg.4]    [Pg.23]    [Pg.108]    [Pg.204]    [Pg.226]    [Pg.27]    [Pg.161]    [Pg.73]    [Pg.443]    [Pg.25]    [Pg.48]    [Pg.20]    [Pg.97]    [Pg.242]    [Pg.172]    [Pg.213]    [Pg.11]    [Pg.164]    [Pg.69]    [Pg.261]    [Pg.419]    [Pg.76]    [Pg.213]    [Pg.5]   


SEARCH



Hydrogen bonds theoretical calculation

Hydrogen calculations

Hydrogen theoretical

Theoretical Calculations of Hydrogen-Bond Geometries

Theoretical calculations

Weak hydrogen bonds theoretical calculation

© 2024 chempedia.info