Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen DuPont adiponitrile process

The most outstanding example for the applieation of homogeneously catalyzed hydrocyanation is the DuPont adiponitrile process. About 75 % of the world s demand for adiponitrile is covered by hydrocyanation of butadiene in the presence of nickel(O) phosphite species. This process is discussed for the addition of HCN to dienes as an example, because in this case a well-founded set of data is available. Though it was Taylor and Swift who referred to hydrocyanation of butadiene for the first time [45], it was to Drinkard s credit that this principle was fully exploited for the development of the DuPont adiponitrile process [18]. The overall process is described as the addition of two equivalents of HCN to butadiene in the presence of a tetrakisphosphite-nickel(O) catalyst and a Lewis acid promoter. A phosphine-containing ligand system for the catalyst is not suitable, since addition of HCN to the tetrakisphosphine-nickel complex results in the formation of hydrogen and the non-aetive dicyano complex [67], In general the reaction can... [Pg.481]

The hydrocyanation of alkenes and dienes has similarly provided an exceptionally useful process for the conversion of simple feedstocks into more complex structures. [Caution Hydrogen cyanide is a highly toxic gas.] The process is best known as a key step in the DuPont adiponitrile process, which involves the dihydrocyanation of 1,3-butadiene (Scheme 3-95). The overall sequence first involves butadiene hydrocyanation to afford a mixture of 3-pentenenitrile and 2-methyl-3-butenenitrile. The unwanted branched isomer 2-methyl-3-butenenitrile is isomerized to 3-pentenenitrile under different conditions, and then 3-pentenenitrile is isomerized to 4-pentenenitrile in a subsequent nickel-catalyzed process in the presence of Lewis acidic additives. Finally, hydrocyanation of the remaining alkene generates the desired product adiponitrile, which serves as a precursor for nylon. A vast number of studies describing the optimization and mechanistic study of this process has appeared, and the interested reader is referred to the many excellent studies describing the details of this process. " ... [Pg.404]

In a related process, 1,4-dichlorobutene was produced by direct vapor-phase chlorination of butadiene at 160—250°C. The 1,4-dichlorobutenes reacted with aqueous sodium cyanide in the presence of copper catalysts to produce the isomeric 1,4-dicyanobutenes yields were as high as 95% (58). The by-product NaCl could be recovered for reconversion to Na and CI2 via electrolysis. Adiponitrile was produced by the hydrogenation of the dicyanobutenes over a palladium catalyst in either the vapor phase or the Hquid phase (59,60). The yield in either case was 95% or better. This process is no longer practiced by DuPont in favor of the more economically attractive process described below. [Pg.220]

Hydrogen cyanide can be added across olefins in the presence of Ni, Co, or Pd complexes (Scheme 56) (123). Conversion of butadiene to adiponitrile is a commercial process at DuPont Co. The reaction appears to occur via oxidative addition of hydrogen cyanide to a low-valence metal, olefin insertion to the metal-hydrogen bond, and reductive elimination of the nitrile product. The overall reaction proceeds with cis... [Pg.288]

Alternatively, caprolactam can be produced from butadiene, via homogeneous nickel-catalysed addition of HCN (DuPont process) followed by selective catalytic hydrogenation of the adiponitrile product to the amino nitrile and vapor phase hydration over an alumina catalyst (Rhodia process) as shown in Fig. 1.49 [137]. [Pg.40]

The DuPont direct hydrocyanation of butadiene process for the production of hexamethylene diamine can also be adapted for the production of caprolactam. Partial hydrogenation of the adiponitrile intermediate in which only one cyanide group is converted to the amine, followed by hydrolysis of the remaining cyanide group and ring closure can produce s-caprolactam. The process has not been developed commercially. It is also possible that a two-stage butadiene car-bony lation process to produce caprolactam, developed by DSM and Shell, may be further developed. [Pg.292]


See other pages where Hydrogen DuPont adiponitrile process is mentioned: [Pg.20]    [Pg.137]    [Pg.37]    [Pg.484]    [Pg.178]    [Pg.707]    [Pg.167]   
See also in sourсe #XX -- [ Pg.1124 ]




SEARCH



Adiponitrile

Adiponitrile process

Adiponitrile, hydrogenation

DuPont process

Hydrogen processes

Hydrogen processing

Hydrogenation process

Hydrogenative process

© 2024 chempedia.info