Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen bromide chloride

Hydrogen bromide is a colourless gas similar in properties to hydrogen chloride. It is very soluble in water, giving hydrobromic... [Pg.332]

Place 0 5 ml. of the pyridine in a 200 ml. round- or flat-bottomed flask and add 34 ml. (30 g.) of benzene. Fit the flask with a reflux water-condenser, and then place it in a cold water-bath. If the experiment is conducted in a fume-cupboard, the top of the condenser can be closed with a calcium chloride tube bent downwards (as in Fig. 61, p. 105 or in Fig. 23(A), p. 45, where the outlet-tube A will carry the calcium chloride tube) and the hydrogen bromide subsequently allowed to escape if, however, the experiment is performed in the open laboratory, fit to the top of the condenser (or to the outlet-tube A) a glass delivery-tube which leads through a piece of rubber tubing to an inverted glass funnel, the rim of which dips just below the surface of some water... [Pg.175]

A solution prepared by dissolving 2 g. of biomine in 100 g. of carbon tetra. chloride is satisfactory. Carbon tetrachloride is employed because it is an excellent solvent for bromine as well as for hydrocarbons it possesses the additional advan. tage of low solubility for hydrogen bromide, the evolution of which renders possible the distinction between decolourisation of bromine due to substitution or due to addition. [Pg.234]

Lead dioxide in acetic acid solution gives lead tetra acetate which oxidises hydrogen bromide (and also hydrogen iodide), but has practically no cflFect under the above experimental conditions upon hydrogen chloride. [Pg.1042]

Hydrogen bromide (but not hydrogen chloride or hydrogen iodide) adds to alkynes by a free radical mechanism when peroxides are present m the reaction mixture As m the free radical addition of hydrogen bromide to alkenes (Section 6 8) a regioselectiv ity opposite to Markovmkov s rule is observed... [Pg.379]

Metaldehyde [9002-91-9] a cycHc tetramer of acetaldehyde, is formed at temperatures below 0°C in the presence of dry hydrogen chloride or pyridine—hydrogen bromide. The metaldehyde crystallizes from solution and is separated from the paraldehyde by filtration (48). Metaldehyde melts in a sealed tube at 246.2°C and sublimes at 115°C with partial depolymerization. [Pg.50]

Thionyl chloride readily converts butanediol to 1,4-dichlorobutane [110-56-5] (130) and hydrogen bromide gives 1,4-dibromobutane [110-52-1]... [Pg.108]

Chemical Properties. Thionyl chloride chemistry has been reviewed (169—173). Significant inorganic reactions of thionyl chloride include its reactions with sulfur trioxide to form pyrosulfuryl chloride and with hydrogen bromide to form thionyl bromide [507-16-4]. With many metal oxides it forms the corresponding metal chloride plus sulfur dioxide and therefore affords a convenient means for preparing anhydrous metal chlorides. [Pg.140]

Hydrogen haHde addition to vinyl chloride in general yields the 1,1-adduct (50—52). The reactions of HCl and hydrogen iodide [10034-85-2], HI, with vinyl chloride proceed by an ionic mechanism, while the addition of hydrogen bromide [10035-10-6], HBr, involves a chain reaction in which a bromine atom [10097-32-2] is the chain carrier (52). In the absence of a transition-metal catalyst or antioxidants, HBr forms the 1,2-adduct with vinyl chloride (52). HF reacts with vinyl chloride in the presence of stannic chloride [7646-78-8], SnCl, to form 1,1-difluoroethane [75-37-6] (53). [Pg.414]

A considerable amount of hydrobromic acid is consumed in the manufacture of inorganic bromides, as well as in the synthesis of alkyl bromides from alcohols. The acid can also be used to hydrobrominate olefins (qv). The addition can take place by an ionic mechanism, usually in a polar solvent, according to Markownikoff s rule to yield a secondary alkyl bromide. Under the influence of a free-radical catalyst, in aprotic, nonpolar solvents, dry hydrogen bromide reacts with an a-olefin to produce a primary alkyl bromide as the predominant product. Primary alkyl bromides are useful in synthesizing other compounds and are 40—60 times as reactive as the corresponding chlorides (6). [Pg.291]

Acids are used to combine with the ammonia formed. A large excess of alcohol is used, but the amount of water is generally kept small. Catalysts such as hydrogen chloride, hydrogen bromide, and sulfuric acid have been employed (71). [Pg.381]

Ethers. In the presence of anhydrous agents such as ferric chloride (88), hydrogen bromide, and acid chlorides, ethers react to form esters (see Ethers). Esters can also be prepared from ethers by an oxidative process (89). With mixed sulfonic—carboxyhc anhydrides, ethers are converted to a mixture of the corresponding carboxylate and sulfonate esters (90) ... [Pg.381]

The considerable quantities of hydrogen chloride and hydrogen bromide evolved are best handled by means of a gas-absorption trap.- The insertion of a calcium chloride tube between the trap and the reflux condenser is recommended. [Pg.59]

Among the cases in which this type of kinetics have been observed are the addition of hydrogen chloride to 2-methyl-1-butene, 2-methyl-2-butene, 1-mefliylcyclopentene, and cyclohexene. The addition of hydrogen bromide to cyclopentene also follows a third-order rate expression. The transition state associated with the third-order rate expression involves proton transfer to the alkene from one hydrogen halide molecule and capture of the halide ion from the second ... [Pg.354]

Product mixtures from radical-chain addition of hydrogen chloride to alkenes are much more complicated than is the case for addition of hydrogen bromide. The problem is that the rate of abstraction of hydrogen from hydrogen chloride is not fast relative to the rate of addition of the alkyl radical to the alkene. This results in the formation of low-... [Pg.711]

Hydrogen bromide Hydrogen chloride Hydrogen cyanide and cyanide salts (excluding cyanogen and cyanogen chloride)... [Pg.162]

Perfluoroalkylsulfonyl chlorides are efficiently converted to the corresponding perfluoroalkyl bromides with hydrogen bromide and a catalyst [55] (equation 38)... [Pg.376]


See other pages where Hydrogen bromide chloride is mentioned: [Pg.399]    [Pg.399]    [Pg.165]    [Pg.3015]    [Pg.118]    [Pg.301]    [Pg.328]    [Pg.176]    [Pg.71]    [Pg.89]    [Pg.189]    [Pg.281]    [Pg.431]    [Pg.512]    [Pg.571]    [Pg.679]    [Pg.113]    [Pg.245]    [Pg.87]    [Pg.322]    [Pg.27]    [Pg.64]    [Pg.294]    [Pg.139]    [Pg.311]    [Pg.354]    [Pg.356]    [Pg.357]    [Pg.298]    [Pg.220]   
See also in sourсe #XX -- [ Pg.67 , Pg.75 , Pg.609 , Pg.619 ]

See also in sourсe #XX -- [ Pg.194 , Pg.273 ]




SEARCH



Bromides hydrogenation

Hydrogen bromid

Hydrogen bromide

© 2024 chempedia.info