Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrides oxidation states

Lead, like tin, forms only one hydride, plumbane. This hydride is very unstable, dissociating into lead and hydrogen with great rapidity. It has not been possible to analyse it rigorously or determine any of its physical properties, but it is probably PbH4. Although this hydride is unstable, some of its derivatives are stable thus, for example, tetraethyllead, Pb(C2Hj)4, is one of the most stable compounds with lead in a formal oxidation state of + 4. It is used as an antiknock in petrol. [Pg.177]

Phosphorus compounds exhibit an enormous variety of chemical and physical properties as a result of the wide range ia the oxidation states and coordination numbers for the phosphoms atom. The most commonly encountered phosphoms compounds are the oxide, haUde, sulfide, hydride, nitrogen, metal, and organic derivatives, all of which are of iadustrial importance. The hahde, hydride, and metal derivatives, and to a lesser extent the oxides and sulfides, are reactive iatermediates for forming phosphoms bonds with other elements. Phosphoms-containing compounds represented about 6—7% of the compound hstiugs ia Chemical Abstracts as of 1993 (1). [Pg.356]

Like mthenium, amines coordinated to osmium in higher oxidation states such as Os(IV) ate readily deprotonated, as in [Os(en) (NHCH2CH2NH2)] [111614-75-6], This complex is subject to oxidative dehydrogenation to form an imine complex (105). An unusual Os(IV) hydride, [OsH2(en)2] [57345-94-5] has been isolated and characterized. The complexes of aromatic heterocycHc amines such as pyridine, bipytidine, phenanthroline, and terpyridine ate similar to those of mthenium. Examples include [Os(bipy )3 [23648-06-8], [Os(bipy)2acac] [47691-08-7],... [Pg.178]

Because they possess an odd number of valence electrons the elements of this group can only satisfy the 18-electron rule in their carbonyls if M-M bonds are present. In accord with this, mononuclear carbonyls are not formed. Instead [M2(CO)s], [M4(CO)i2] and [M6(CO)i6] are the principal binary carbonyls of these elements. But reduction of [Co2(CO)g] with, for instance, sodium amalgam in benzene yields the monomeric and tetrahedral, 18-electron ion, [Co(CO)4] , acidification of which gives the pale yellow hydride, [HCo(CO)4]. Reductions employing Na metal in liquid NH3 yield the super-reduced [M(CO)3] (M = Co, Rh, Ir) containing these elements in their lowest formal oxidation state. [Pg.1140]

This apparatus may also be adapted for what are termed hydride generation methods (which are strictly speaking flame-assisted methods). Elements such as arsenic, antimony, and selenium are difficult to analyse by flame A AS because it is difficult to reduce compounds of these elements (especially those in the higher oxidation states) to the gaseous atomic state. [Pg.789]

Many of these binary compounds have hydrogen in its +1 oxidation state, and so the name hydride is not really appropriate. However, it is the conventional term. [Pg.704]

Valence and oxidation state are directly related to the valence-shell electron configuration of a group. Binary hydrides are classified as saline, metallic, or molecular. Oxides of metals tend to be ionic and to form basic solutions in water. Oxides of nonmetals are molecular and many are the anhydrides of acids. [Pg.705]

Metal hydrides containing transition metal (TM)-hydrogen complexes, with the transition metal in a formally low oxidation state, are of fundamental interest for clarifying how an electron-rich metal atom can be stabilized without access to the conventional mechanism for relieving the electron density by back-donation to suitable ligand orbitals. By reacting electropositive alkali or alkaline earth metals ( -elements) with group 7, 8, 9, and 10 transition metals in... [Pg.645]

The reduction of cyanocobalamin gives three possible oxidation states for the cobalt atom (Fig. 2). Electron spin resonance studies with Bi2-r reveals that this molecule is the only paramagnetic species giving a spectrum expected for a tetragonal low spin Co(II) complex. Controlled potential reduction of cyanocobalamin to Bi2-r proves that this reduction involves one electron, and further reduction of Bi2-r to B12-S requires a second single electron (16—19). At one time B12-S was considered to be a hydride of Co(III), but controlled potential coulometry experiments provided evidence against a stable hydride species (16). However, these experimental data do not exclude the possibility of a stable Co(III) hydride as the functional species in enzyme catalyzed oxidation reduction reactions. [Pg.53]

Proton electroreduction catalyzed by metal complexes is different from reduction at a metal electrode. It definitely involves the formation of metal hydride species through protonation of electroreduced, low-oxidation-state metal complexes that function as Bronsted base (Equation (5)). From protonated... [Pg.473]


See other pages where Hydrides oxidation states is mentioned: [Pg.65]    [Pg.235]    [Pg.275]    [Pg.345]    [Pg.348]    [Pg.425]    [Pg.259]    [Pg.178]    [Pg.332]    [Pg.134]    [Pg.228]    [Pg.27]    [Pg.494]    [Pg.754]    [Pg.819]    [Pg.1037]    [Pg.1129]    [Pg.1134]    [Pg.197]    [Pg.194]    [Pg.416]    [Pg.745]    [Pg.303]    [Pg.98]    [Pg.145]    [Pg.201]    [Pg.57]    [Pg.164]    [Pg.51]    [Pg.645]    [Pg.646]    [Pg.676]    [Pg.735]    [Pg.170]    [Pg.14]    [Pg.416]    [Pg.465]   
See also in sourсe #XX -- [ Pg.26 , Pg.267 ]




SEARCH



Hydride oxidation

Oxides hydrides

© 2024 chempedia.info