Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Highest occupied molecular orbital acidity

Examine pyrrole s highest-occupied molecular orbital (HOMO) to see if your can predict the most favorable protonation site. Which of the pyrrole s conjugate acids (N protonated, C2 proto noted, C3 proto noted pyrrole) is lowest in energy Examine electrostatic potential maps to see if the lowest-energy form is also that in which the positive charged is best delocalized. Rationalize your result using resonance arguments. What should be the favored substitution product ... [Pg.213]

In 1960, Yates and Eaton (192) demonstrated that Lewis acids can dramatically accelerate the Diels-Alder reaction. In principle, any transformation wherein coordination of a Lewis acid may reduce the gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of a given set of reactants should be susceptible to Lewis acid catalysis. Indeed, numerous important carbon-carbon bond-forming organic transformations have been shown to be amenable to rate acceleration by a Lewis acid. In many cases, the use... [Pg.88]

Further examination of the results indicated that by invocation of Pearson s Hard-Soft Acid-Base (HSAB) theory (57), the results are consistent with experimental observation. According to Pearson s theory, which has been generalized to include nucleophiles (bases) and electrophiles (acids), interactions between hard reactants are proposed to be dependent on coulombic attraction. The combination of soft reactants, however, is thought to be due to overlap of the lowest unoccupied molecular orbital (LUMO) of the electrophile and the highest occupied molecular orbital (HOMO) of the nucleophile, the so-called frontier molecular orbitals. It was found that, compared to all other positions in the quinone methide, the alpha carbon had the greatest LUMO electron density. It appears, therefore, that the frontier molecular orbital interactions are overriding the unfavorable coulombic conditions. This interpretation also supports the preferential reaction of the sulfhydryl ion over the hydroxide ion in kraft pulping. In comparison to the hydroxide ion, the sulfhydryl is relatively soft, and in Pearson s theory, soft reactants will bond preferentially to soft reactants, while hard acids will favorably combine with hard bases. Since the alpha position is the softest in the entire molecule, as evidenced by the LUMO density, the softer sulfhydryl ion would be more likely to attack this position than the hydroxide. [Pg.274]

These interactions may usefully be described as an acid-base type interaction, in which the cyclopropane ring acts as a base (electron donor) and the proton or cationic center acts as the acid (electron acceptor). One of the factors that controls the basicity of a hydrocarbon is the energy of the highest occupied molecular orbital (HOMO).60 The 6-31 G HOMO energies of some cycloalkanes and cycloalkenes are given in Table 4.61... [Pg.13]

Examine pyrrole s highest-occupied molecular orbital (HOMO) to see if your can predict the most favorable protonation site. Which of the pyrrole s conjugate acids (N protonated, C2 proto noted, C3 protonated pyrrole) is... [Pg.277]

The Principle of Hard and Soft Acids and Bases states that hard acids form more stable complexes with hard bases and soft bases form more stable complexes with soft acids. In orbital terms hard molecules have a large gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), and soft molecules have a small HOMO-LUMO gap. In recent years it has been possible to correlate the hardness with the electronic properties of the atoms involved. Thus, if the enthalpy of ionisation (I) and the electron affinity (A) are known the so-called absolute hardness (t ) and absolute electronegativity (%) can be found from r = (I - A) / 2 and % = (I + A) / 2. For example, the first and second ionisation enthalpies of sodium are 5.14 and 47.29 eV. Thus for Na+, I = + 47.29 and A = + 5.14, so r = (47.29 - 5.14) / 2 = 21.1. Similarly for silver the first and second ionisation enthalpies are 7.58 and 21.49eV, so for Ag+ we have, n = (21.49 - 7.58) 12 = 6.9. [Pg.144]

Klemperer and co-workers. 31) In this model the hydrogen bond is viewed as an electron donor-acceptor complex in which a pair of electrons from the highest occupied molecular orbital of the Lewis base is donated to the lowest unoccupied molecular orbital of the Lewis acid. If the donor electron pair is assumed to have the appropriate hybridization, and the acceptor orbital to be axially symmetric, the above structures can be rationalized as giving maximal overlap between the HOMO and LUMO. [Pg.98]


See other pages where Highest occupied molecular orbital acidity is mentioned: [Pg.1300]    [Pg.298]    [Pg.768]    [Pg.51]    [Pg.568]    [Pg.581]    [Pg.480]    [Pg.246]    [Pg.334]    [Pg.204]    [Pg.709]    [Pg.125]    [Pg.304]    [Pg.16]    [Pg.386]    [Pg.252]    [Pg.283]    [Pg.265]    [Pg.107]    [Pg.253]    [Pg.279]    [Pg.500]    [Pg.433]    [Pg.115]    [Pg.225]    [Pg.273]    [Pg.467]    [Pg.5415]    [Pg.956]    [Pg.78]    [Pg.87]    [Pg.252]    [Pg.526]    [Pg.959]    [Pg.287]   
See also in sourсe #XX -- [ Pg.397 , Pg.398 , Pg.399 , Pg.400 , Pg.401 , Pg.402 , Pg.403 , Pg.404 , Pg.405 , Pg.406 ]




SEARCH



Highest

Highest occupied molecular

Highest occupied molecular orbital

Molecular acids

Molecular orbital occupied

Molecular orbitals highest occupied

Occupied molecular orbitals

Occupied orbital

Occupied orbitals

Orbitals highest occupied

© 2024 chempedia.info