Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heteronuclei

New techniques (multiple pulse methods) in structure elucidation [14] Acquisition of newly accessible heteronuclei (such as N and O) [75]... [Pg.1038]

Coupling constants are routinely used to determine the side-chain conformation of amino acids in peptides and proteins. Whereas proteins nowadays are almost exclusively studied as C- and N-labeled isotopomers, peptides usually have these isotopes in natural abundance, i.e. the magnetically active heteronuclei are highly diluted. Most amino acids contain a methylene group at the ji-position for which the X angle is determined by the conformation of the Ca—Cp bond. Two vicinal Jhh coupling constants can be measured Ha to and H to Usually... [Pg.227]

Kurz, M., Schmieder, P., Kessler, H. HETLOC, an efficient method for determining heteronuclear long-range couplings with heteronuclei in natural abundance. Angew. Chem. Int. Ed. 1991, 30,1329-1331. [Pg.249]

Kuhn LT, Bargon J (2007) Transfer of Parahydrogen-Induced Hyperpolarization to Heteronuclei. 276 25-68... [Pg.261]

Just as in the COSY type of experiments this cross-relaxation effect is not restricted to protons, but can also involve heteronuclei the acronym HOESY (heteronuclear Overhauser effect) is used in these cases. This can be used, for example, to show that an anion such as IT1., is in close proximity to the ligands of the organometallic compound, as was carried out by Macchioni et al. with a 19F-xH HOESY experiment [24]. [Pg.303]

Likewise, the original proton polarization can be transferred to other magnetically active heteronuclei, notably to 13C, 15N, 19F, 29Si, 31P or appropriate isotopes of various transition metals. This is especially attractive because of the frequently low sensitivity of many heteronuclei, in particular of those with low magnetic moments [8]. [Pg.314]

The kinetics of hydrogenation transfer is covered by the use of an exchange superoperator assuming a pseudo first-order reaction. Thereby, competing hydrogenations of the substrate to more than one product can also be accommodated. In addition, the consequences of relaxation effects or NOEs can be included into the simulations if desired. Furthermore, it is possible to simulate the consequences of different types of pulse sequences, such as PH-INEPT or INEPT+, which have previously been developed for the transfer of polarization from the parahydrogen-derived protons to heteronuclei such as 13C or 15N. The... [Pg.341]

Furthermore, the qualitative influence of substituents on the symmetry and electronic structure of the substrate and its hydrogenation product on the efficiency of the transfer of polarization to the 13C-nuclei have been discussed, as well as the feasibility of a polarization transfer to other heteronuclei. Evidence in the form of a shift of the aromatic 13C resonances has been found for an initial attachment of hydrogenation products containing aromatic segments to the metal center of the cationic hydrogenation catalyst - probably in the form of a re-complex. [Pg.344]

Transfer of the initial proton polarization is not confined to other protons or 13C, but the signals of other heteronuclei (2H, 15N, 29Si, 31P) in the hydrogenation products can also become substantially enhanced, thereby also increasing their receptivity. Accordingly, the transfer of the PHIP-derived high spin order to 19F has been accomplished using a set of chemically similar fluorinated styrene and ethynylbenzene derivatives. [Pg.352]

Likewise, the initial proton polarization may be transferred to other magnetically active heteronuclei, most attractively to those associated with a low y-value of their nucleus (i.e., to 15N, 29Si), and similarly difficult ones, using heteroatom PHIP at low magnetic fields [8, 45]. [Pg.353]

It is possible to obtain NMR spectra of nearly all elements, although not always from observing the isotope with the highest natural abundance, as can be seen from the examples of carbon and oxygen. For reasons connected with the historical development of NMR spectroscopy, nuclei of all species other than H are referred to as heteronuclei. [Pg.88]

The procedures for recording spectra of heteronuclei often differ considerably from those for H and (which would today be considered routine ) since it is necessary, even for routine measurements, to adjust the experimental conditions to suit the special properties of the nuclei to be observed. For example, the spin-lattice relaxation times for some nuclides, such as N, are very long, whereas for others (especially those with an electric quadrupole moment, such as N) they are very short. Also, the spectra observed for some nuclides contain interfering signals caused by other materials present, for example the glass of the sample tube ("B, Si), the spectrometer probe unit ( Al) or the transmitter/receiver coil. For many nuclides the sample temperature and its constancy are important factors for example, quadrupolar nuclides such as O give narrower signals when the temperature is increased. [Pg.88]

The detection of heteronuclear long-range spin-spin interactions and the measurement of the corresponding coupling constants serve to assign the signals of heteronuclei, especially of quaternary centers and yield most important structural informations, i.e., connectivities between molecular frag-... [Pg.44]

The INEPT (Insensitive Nuclei Enhanced by Polarization Transfer) experiment [6, 7] was the first broadband pulsed experiment for polarization transfer between heteronuclei, and has been extensively used for sensitivity enhancement and for spectral editing. For spectral editing purposes in carbon-13 NMR, more recent experiments such as DEPT, SEMUT [8] and their various enhancements [9] are usually preferable, but because of its brevity and simplicity INEPT remains the method of choice for many applications in sensitivity enhancement, and as a building block in complex pulse sequences with multiple polarization transfer steps. The potential utility of INEPT in inverse mode experiments, in which polarization is transferred from a low magnetogyric ratio nucleus to protons, was recognized quite early [10]. The principal advantage of polarization transfer over methods such as heteronuclear spin echo difference spectroscopy is the scope it offers for presaturation of the unwanted proton signals, which allows clean spec-... [Pg.94]

Fig. 1. Pulse sequences for determining spin-lattice relaxation time constants. Thin bars represent tt/2 pulses and thick bars represent tt pulses, (a) The inversion-recovery sequence, (b) the INEPT-enhanced inversion recovery, (c) a two-dimensional proton-detected INEPT-enhanced sequence and (d) the CREPE sequence. T is the waiting period between individual scans. In (b) and (c), A is set to (1 /4) Jm and A is set to (1 /4) Jm to maximize the intensity of IH heteronuclei and to (1/8) Jm to maximize the intensity of IH2 spins. The phase cycling in (c) is as follows 4>i = 8(j/),8(-j/) 3 = -y,y A = 2(x),2(-x) Acq = X, 2 —x), X, —X, 2(x), —x, —x, 2(x), —x, x, 2 —x),x. The one-dimensional version of the proton-detected experiment can be obtained by omitting the f delay. In sequence (d), the phase 4> is chosen as increments of 27r/16 in a series of 16 experiments. Fig. 1. Pulse sequences for determining spin-lattice relaxation time constants. Thin bars represent tt/2 pulses and thick bars represent tt pulses, (a) The inversion-recovery sequence, (b) the INEPT-enhanced inversion recovery, (c) a two-dimensional proton-detected INEPT-enhanced sequence and (d) the CREPE sequence. T is the waiting period between individual scans. In (b) and (c), A is set to (1 /4) Jm and A is set to (1 /4) Jm to maximize the intensity of IH heteronuclei and to (1/8) Jm to maximize the intensity of IH2 spins. The phase cycling in (c) is as follows 4>i = 8(j/),8(-j/) <jn = 4 x),4 -x) <f>3 = -y,y <t>A = 2(x),2(-x) Acq = X, 2 —x), X, —X, 2(x), —x, —x, 2(x), —x, x, 2 —x),x. The one-dimensional version of the proton-detected experiment can be obtained by omitting the f delay. In sequence (d), the phase 4> is chosen as increments of 27r/16 in a series of 16 experiments.
Heteronuclei such as 13C (this magnetically active nucleus has 1.1% natural abundant) and 15N (0.3% natural abundance) are routinely measured with modem NMR spectrometers. Proton decoupled 13C NMR spectra in natural abundance exhibit singlets for each specific carbon atom, which are easier to count than overlapping multiplet lines in H NMR. ID 13C NMR can be used to investigate whether a peptide exhibits a single set of lines or a double (or more) set, which indicate conformational or configurational isomers (see Section 7.5.3). However, ID 13C NMR is rather insensitive and if there is not enough material or the solubility is low, more sensitive techniques have to be applied. [Pg.670]

In contrast to applications in structural biology where X/Y correlations are nowadays normally executed as H detected, three-dimensional experiments because of sensitivity reasons,14 many studies on inorganic or organometallic compounds are still performed as two-dimensional experiments with direct detection of one heteronucleus and under -decoupling. As compared to these two categories, one-dimensional polarisation transfer methods such as (semi) selective X/Y-INEPT or INDOR-type techniques, which had in the past been shown to be particularly useful for the characterisation of substrates with only one or two heteronuclei,11 have recently received less attention.15 NOE-based correlations, which are frequently employed for the structure elucidation of bio-molecules, remain rare, and apart from an earlier report of a 13C/6Li HOESY experiment,16 have not been further investigated. [Pg.62]

The task of generating a display of heteronuclear X/Y-connectivities with optimum sensitivity can in principle be performed by recording a three-dimensional proton detected shift correlation in which the chemical shifts of both heteronuclei X and Y are each sampled in a separate indirect dimension. Three-dimensional fourier transformation of the data then generates a cube which is defined by three orthogonal axes representing the chemical shifts of the three nuclei 1H, X, Y, and the desired two-dimensional X/Y-correlation is readily obtained as a two-dimensional projection parallel to the axis... [Pg.70]


See other pages where Heteronuclei is mentioned: [Pg.12]    [Pg.268]    [Pg.208]    [Pg.222]    [Pg.222]    [Pg.295]    [Pg.342]    [Pg.344]    [Pg.345]    [Pg.349]    [Pg.351]    [Pg.353]    [Pg.353]    [Pg.354]    [Pg.1582]    [Pg.127]    [Pg.841]    [Pg.52]    [Pg.172]    [Pg.74]    [Pg.42]    [Pg.152]    [Pg.332]    [Pg.198]    [Pg.45]    [Pg.59]    [Pg.61]    [Pg.61]    [Pg.64]    [Pg.66]   
See also in sourсe #XX -- [ Pg.42 , Pg.43 , Pg.55 , Pg.56 , Pg.57 , Pg.58 , Pg.108 , Pg.271 , Pg.290 , Pg.291 , Pg.298 , Pg.314 , Pg.322 , Pg.323 ]

See also in sourсe #XX -- [ Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 , Pg.21 , Pg.22 , Pg.23 , Pg.24 , Pg.25 , Pg.26 , Pg.27 , Pg.28 ]

See also in sourсe #XX -- [ Pg.118 , Pg.120 ]

See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Heteronuclei coupling

Three-bond Couplings Between Hydrogen and Heteronuclei

© 2024 chempedia.info