Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heteronuclear multiple bond problems

The main emphasis of current carbohydrate structural analysis is the applicability of modern multi-dimensional NMR for solving the two crucial problems in complex carbohydrate structural analysis, namely, the elucidation of the sequence of glycosyl residues and the solution conformation and dynamics of a carbohydrate (150). Techniques include 2D Total Correlation Spectroscopy (TOCSY), Nuclear Overhauser effect spectroscopy (NOESY), rotational nuclear Overhauser effect spectroscopy (ROES Y),hetero-nuclear single quantum coherence (HSQC), heteronuclear multiple quantum correlation (HMQC), heteronuclear multiple bond correlation (HMBC), and (pseudo) 3D and 4D extensions. [Pg.232]

Heteronuclear Multiple Quantum Correlation) and HMBC (Heteronuclear Multiple Bond Correlation). Application of nuclear Overhauser effect (nOe) difference spectroscopy and nuclear Overhauser effect spectroscopy (NOESY) complete the analysis, giving atomic spatial relationships. Sensitivity problems can be alleviated using Homo Hartmann-Hahn spectroscopy (HOHAHA or TOCSY, Total Correlation Spectroscopy). For weak nOes a rotating frame experiment, i.e. ROESY (Rotating frame Overhauser Effect Spectroscopy) is useful, and may be the best experimental method to sequence chains of sugars [5]. [Pg.138]

There are two approaches to pulse sequence classification depending on the user s occupation. For the chemist who has to solve a structural question or characterize a new compound it is the spectra obtained from the pulse sequence that is of primary importance. The NMR spectroscopist is usually more concerned with the pulse sequence structure and choice of experimental parameters and whether a particular pulse sequence can be improved or modified to solve a specific problem. These two different approaches lead to confusion in pulse sequence nomenclature such that names are often a combination of the purpose of the experiment and the sequence layout. For example the commonly used acronyms HMQC, HSQC and HMBC imply a consistent abbreviation system yet HMQC and HSQC describe the coherence state during the evolution time whilst HMBC denotes an experiment to correlate nuclei using multiple bond heteronuclear scalar coupling. [Pg.180]


See other pages where Heteronuclear multiple bond problems is mentioned: [Pg.22]    [Pg.50]    [Pg.313]    [Pg.180]    [Pg.26]    [Pg.214]    [Pg.222]    [Pg.23]    [Pg.36]    [Pg.268]   


SEARCH



Bonding problems

Heteronuclear multiple-bond

Multiple heteronuclear

Multiplicity problem

Problems multiple

© 2024 chempedia.info