Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterolactic acid bacteria

Some lactic acid bacteria of the genus Lactobacillus, as well as Leuconostoc mesenteroides and Zymomonas mobilis, carry out the heterolactic fermentation (Eq. 17-33) which is based on the reactions of the pentose phosphate pathway. These organisms lack aldolase, the key enzyme necessary for cleavage of fructose 1,6-bisphosphate to the triose phosphates. Glucose is converted to ribulose 5-P using the oxidative reactions of the pentose phosphate pathway. The ribulose-phosphate is cleaved by phosphoketolase (Eq. 14-23) to acetyl-phosphate and glyceraldehyde 3-phosphate, which are converted to ethanol and lactate, respectively. The overall yield is only one ATP per glucose fermented. [Pg.972]

Diacetyl may be synthesized by either homolactic or heterolactic pathways of sugar metabolism as well as by utilization of citric acid (Fig. 2.9). Citric acid is hrst converted to acetic acid and oxaloacetate the latter is then decarboxylated to pyruvate. Although earlier reports indicated that diacetyl synthesis by lactic acid bacteria does not proceed via a-acetolactate (Gottschalk, 1986), more recent evidence suggests that this pathway is active in lactic acid bacteria (Ramos et al., 1995). Here, pyruvate undergoes a second decarboxylation and condensation with thiamine pyrophosphate (TPP) to yield active acetaldehyde. This compound then reacts with another molecule of pyruvate to yield a-acetolactate, which, in... [Pg.44]

Some bacteria that lack the usual aldolase produce ethanol and lactic acid in a 1 1 molar ratio via the "heterolactic fermentation." Glucose is converted to ribulose 5-phosphate via the pentose phosphate pathway enzymes. A thiamin diphosphate-dependent "phosphoketolase" cleaves xylulose 5-phosphate in the presence of inorganic phosphate to acetyl phosphate and glyceraldehyde 3-phosphate. [Pg.1010]


See other pages where Heterolactic acid bacteria is mentioned: [Pg.18]    [Pg.18]    [Pg.669]    [Pg.247]    [Pg.7]    [Pg.25]    [Pg.211]    [Pg.160]    [Pg.172]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Acid bacteria)

© 2024 chempedia.info