Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkynes heterocyclic

The Pd-catalyzed coupling reactions of alkenyl bromides with heterocyclic alkynes (40) under the above phase-transfer conditions have been employed to prepare a large number of heterocyclic alkyne derivatives, including some naturally occurring compounds (Scheme 28). The experiment conditions... [Pg.539]

The Miyaura and Batey groups have also independently reported the use of rhodium catalysts for addition to aldehydes in the presence of phosphine ligands.Tautens has shown that [Rh(cod)Cl]2-catalysed reactions of heterocyclic alkynes with arylboronic acids in the presence of water-soluble ligands and sodium dodecyl sulfate (SDS) and sodium carbonate as bases affords trisubstituted alkenes in high regio-selectivity. ... [Pg.401]

Terminal alkynes react similarly with alkenyl isocyanates. In the presence of chiral phosphoramidites as ligands the corresponding cycloadducts are obtained. For example, from the alkenyl isocyanate 197 and the heterocyclic alkyne 198 the cycloadducts 199 and 200 are obtained in 85 % yield (91 % e,e) . [Pg.113]

Two moles of diphenylacetylene insert into the benzyl methyl sulfide complex 481 to afford the eight-membered heterocycle 482[440j. The cinnolinium Salt 483 is prepared by the insertion of alkynes into the azobenzene com-plex[44l]. [Pg.89]

The direct combination of selenium and acetylene provides the most convenient source of selenophene (76JHC1319). Lesser amounts of many other compounds are formed concurrently and include 2- and 3-alkylselenophenes, benzo[6]selenophene and isomeric selenoloselenophenes (76CS(10)159). The commercial availability of thiophene makes comparable reactions of little interest for the obtention of the parent heterocycle in the laboratory. However, the reaction of substituted acetylenes with morpholinyl disulfide is of some synthetic value. The process, which appears to entail the initial formation of thionitroxyl radicals, converts phenylacetylene into a 3 1 mixture of 2,4- and 2,5-diphenylthiophene, methyl propiolate into dimethyl thiophene-2,5-dicarboxylate, and ethyl phenylpropiolate into diethyl 3,4-diphenylthiophene-2,5-dicarboxylate (Scheme 83a) (77TL3413). Dimethyl thiophene-2,4-dicarboxylate is obtained from methyl propiolate by treatment with dimethyl sulfoxide and thionyl chloride (Scheme 83b) (66CB1558). The rhodium carbonyl catalyzed carbonylation of alkynes in alcohols provides 5-alkoxy-2(5//)-furanones (Scheme 83c) (81CL993). The inclusion of ethylene provides 5-ethyl-2(5//)-furanones instead (82NKK242). The nickel acetate catalyzed addition of r-butyl isocyanide to alkynes provides access to 2-aminopyrroles (Scheme 83d) (70S593). [Pg.135]

Furans, thiophenes and pyrroles have all been obtained by addition of alkynic dienophiles to a variety of other five-membered heterocycles, as illustrated in Scheme 104. As the alkynic moiety provides carbons 3 and 4 of the resulting heterocycle, this synthetic approach provides an attractive way of introducing carbonyl containing substituents at these positions, especially as many of the heterocyclic substrates are readily generated. Such reactions do... [Pg.144]

Heterocycles which provide the NOC or CNO component synthon Isoxazoles can be prepared by the thermal or photolytic cleavage of a number of heterocycles, such as 1,3,5-dioxazolidone, furazans, furoxans and 1,3,2,4-dioxathiazole 2-oxides, in the presence of a reactive alkene or alkyne. [Pg.81]

NMR, 3, 542 oxidation, 3, 546 phosphorescence, 3, 543 photoelectron spectra, 3, 542 photolysis, 3, 549 reactions, 3, 543-555 with alkenes, 3, 50 with alkynes, 3, 50 with IH-azepines, 3, 552 with azirines, 3, 554 with cyclobutadiene, 3, 551 with cyclopropenes, 3, 550 with dimethylbicyclopropenyl, 3, 551 with heterocyclic transition metal complexes, 7, 28 29... [Pg.852]

The 1,3-dipolar molecules are isoelectronic with the allyl anion and have four electrons in a n system encompassing the 1,3-dipole. Some typical 1,3-dipolar species are shown in Scheme 11.4. It should be noted that all have one or more resonance structures showing the characteristic 1,3-dipole. The dipolarophiles are typically alkenes or alkynes, but all that is essential is a tc bond. The reactivity of dipolarophiles depends both on the substituents present on the n bond and on the nature of the 1,3-dipole involved in the reaction. Because of the wide range of structures that can serve either as a 1,3-dipole or as a dipolarophile, the 1,3-dipolar cycloaddition is a very useful reaction for the construction of five-membered heterocyclic rings. [Pg.646]

The reaction of tnfluoromethyl-substituted A -acyl umnes toward nucleophiles in many aspects parallels that of the parent polyfluoro ketones Heteronucleophiles and carbon nucleophiles, such as enarmnes [37, 38], enol ethers [38, 39, 40], hydrogen cyanide [34], tnmethylsilylcarbomlnle [2,47], alkynes [42], electron-nch heterocycles [43], 1,3-dicarbonyl compounds [44], organolithium compounds [45, 46, 47, 48], and Gngnard compounds [49,50], readily undergo hydroxyalkylation with hexafluoroace-tone and amidoalkylation with acyl imines denved from hexafluoroacetone... [Pg.842]

Cyclotrithiazyl chloride is also a useful reagent in organic chemistry in the fusion of 1,2,5-thiadiazoles to quinones as well as the synthesis of (a) isothiazoles from 2,5-disubstituted furans and (b) bis-1,2,5-thiadiazoles from A-alkylpyrroles (Scheme 8.4). Alkenes and alkynes react readily with (NSC1)3 to give 1,2,5-thiadiazoles, while 1,4-diphenyl-1,3-butadiene gives a variety of heterocyclic products including a bis(l, 2,5-thiadiazole). ... [Pg.151]

Fluorinated alkenes and alkynes are highly activated toward nucleophilic attack and reaction with bifunctional nucleophiles is a fruitful area for the synthesis of heterocycles. A review on perfluoroalkyl(aryl)acety-lenes contains many examples (91RCR501). [Pg.10]

While these reports are mainly concerned with an evaluation of the peculiar structure of the iminophosphenium cation, this species also reveals cycloaddition properties. The cation shows a [2-t-l] cycloaddition behaviour towards alkynes [50]. With iminophosphanes and alkylazides the cations react with the formation of four- and five-membered heterocyclic ring systems [51], as shown for example in Scheme 9. [Pg.83]

Alkyne-nitrile cyclotrimerization is a powerful synthetic methodology for the synthesis of complex heterocyclic aromatic molecules.118 Recently, Fatland et al. developed an aqueous alkyne-nitrile cyclotrimerization of one nitrile with two alkynes for the synthesis of highly functionalized pyridines by a water-soluble cobalt catalyst (Eq. 4.62). The reaction was chemospecific and several different functional groups such as unprotected alcohols, ketones, and amines were compatible with the reaction.119 In addition, photocatalyzed [2+2+2] alkyne or alkyne-nitrile cyclotrimerization in water120 and cyclotrimerization in supercritical H2O110121 have been reported in recent years. [Pg.133]


See other pages where Alkynes heterocyclic is mentioned: [Pg.40]    [Pg.186]    [Pg.310]    [Pg.702]    [Pg.72]    [Pg.373]    [Pg.1351]    [Pg.774]    [Pg.34]    [Pg.40]    [Pg.186]    [Pg.310]    [Pg.702]    [Pg.72]    [Pg.373]    [Pg.1351]    [Pg.774]    [Pg.34]    [Pg.123]    [Pg.142]    [Pg.744]    [Pg.2]    [Pg.93]    [Pg.544]    [Pg.135]    [Pg.30]    [Pg.145]    [Pg.32]    [Pg.54]    [Pg.553]    [Pg.271]    [Pg.1090]    [Pg.186]    [Pg.33]    [Pg.136]    [Pg.237]    [Pg.21]    [Pg.52]    [Pg.379]    [Pg.289]    [Pg.69]    [Pg.119]   
See also in sourсe #XX -- [ Pg.186 ]




SEARCH



Alkyne derivatives heterocyclic synthesis

Alkynes coupling, with heterocycles

Alkynes heterocycle synthesis, sodium azide

Alkynes heterocyclic synthesis

Alkynes heterocyclization

Heterocycles from alkynes

Heterocyclic compounds formation from alkynes

© 2024 chempedia.info