Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat and Mass Transfer Phenomena in Fluidization Systems

Heat and Mass Transfer Phenomena in Fluidization Systems [Pg.499]

The heat and mass transfer properties can be represented by heat and mass transfer coefficients, which are commonly given in empirical or semiempirical correlation form. The transfer coefficient is defined in terms of flow models under specific flow conditions and geometric arrangements of the flow system. Thus, when applying the correlations, it is necessary to employ the same flow model to describe the heat and mass transfer coefficients for conditions comparable to those where the correlations were obtained. An accurate characterization of the heat and mass transfer can be made only when the hydrodynamics and underlying mechanism of the transport processes are well understood. [Pg.499]

The governing heat transfer modes in gas-solid flow systems include gas-particle heat transfer, particle-particle heat transfer, and suspension-surface heat transfer by conduction, convection, and/or radiation. The basic heat and mass transfer modes of a single particle in a gas medium are introduced in Chapter 4. This chapter deals with the modeling approaches in describing the heat and mass transfer processes in gas-solid flows. In multiparticle systems, as in the fluidization systems with spherical or nearly spherical particles, the conductive heat transfer due to particle collisions is usually negligible. Hence, this chapter is mainly concerned with the heat and mass transfer from suspension to the wall, from suspension to an immersed surface, and from gas to solids for multiparticle systems. The heat and mass transfer mechanisms due to particle convection and gas convection are illustrated. In addition, heat transfer due to radiation is discussed. [Pg.499]


Bubble dynamics and characteristics discussed above determine the hydrodynamic and heat and mass transfer behaviors in three-phase fluidization systems, which is important for better design and operation of three-phase fluidized beds. In this section, various hydrodynamic variables and transfer properties in three-phase systems are discussed. Specifically, areas discussed in the hydrodynamics section are minimum fluidization, bed contraction and moving packed bed phenomenon, flow regime transition, overall gas holdup and hydro-dynamic similarity, and bubble size distribution and the dominant role of larger bubbles. Later in this section, important topics covering transport phenomena will be discussed, which include heat and mass transfer and phase mixing. [Pg.779]

The book is arranged in two parts Part I deals with basic relationships and phenomena, including particle size and properties, collision mechanics of solids, momentum transfer and charge transfer, heat and mass transfer, basic equations, and intrinsic phenomena in gas-solid flows. Part II discusses the characteristics of selected gas-solid flow systems such as gas-solid separators, hopper and standpipe flows, dense-phase fluidized beds, circulating fluidized beds, pneumatic conveying systems, and heat and mass transfer in fluidization systems. [Pg.558]

The fluidized bed systems have been utilized extensively in many physical, chemical, petrochemical, electrochemical, and biochemical processes. Successful applications of the fluidization systems lie in a comprehensive understanding of hydrodynamics, heat and mass transfer properties, and mixing. Various non-intrusive measurement techniques, such as electric capacitance tomography and radioactive particle tracking technique, are available to advance the fundamental understanding of the microscopic and macroscopic phenomena of fluidization. Till date, the... [Pg.1004]


See other pages where Heat and Mass Transfer Phenomena in Fluidization Systems is mentioned: [Pg.573]    [Pg.553]    [Pg.379]    [Pg.1003]    [Pg.886]    [Pg.557]    [Pg.801]    [Pg.523]    [Pg.523]    [Pg.405]    [Pg.25]    [Pg.521]    [Pg.505]    [Pg.437]   


SEARCH



Fluidization and heat transfer

Fluidization systems

Fluidized system

Heat systems

Heat transfer phenomena

Mass Transfer Phenomena

Mass and heat transfer

Mass heating

Mass phenomena

Phenomena transfer

Transfer system

© 2024 chempedia.info