Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometry hard ionisation

Fig. 15.14 Analytical techniques for time-resolved headspace analysis. An electronic nose can be used as a low-cost process-monitoring device, where chemical information is not mandatory. Electron impact ionisation mass spectrometry (EI-MS) adds sensitivity, speed and some chemical information. Yet, owing to the hard ionisation mode, most chemical information is lost. Proton-transfer-reaction MS (PTR-MS) is a sensitive one-dimensional method, which provides characteristic headspace profiles (detailed fingerprints) and chemical information. Finally, resonance-enhanced multiphoton ionisation (REMPI) TOFMS combines selective ionisation and mass separation and hence represents a two-dimensional method. (Adapted from [190])... Fig. 15.14 Analytical techniques for time-resolved headspace analysis. An electronic nose can be used as a low-cost process-monitoring device, where chemical information is not mandatory. Electron impact ionisation mass spectrometry (EI-MS) adds sensitivity, speed and some chemical information. Yet, owing to the hard ionisation mode, most chemical information is lost. Proton-transfer-reaction MS (PTR-MS) is a sensitive one-dimensional method, which provides characteristic headspace profiles (detailed fingerprints) and chemical information. Finally, resonance-enhanced multiphoton ionisation (REMPI) TOFMS combines selective ionisation and mass separation and hence represents a two-dimensional method. (Adapted from [190])...
Principles and Characteristics Ionisation processes are the basis for mass-spectrometric detection. Each of the ionisation techniques occupies its own position in mass spectrometry. The optimum performance of any ionisation method (and therefore the result) will depend critically on the characteristics and reliability of the mass spectrometer. Ionisation may occur in the gas, liquid or condensed phase, and may be either hard or soft , i.e. with or without extensive... [Pg.357]

Interpretation of mass spectra depends on the type of mass spectrometer and ionisation technique used. Hard ionisation methods such as El produce molecular ion fragmentation, which can be used to identify diagnostic fragmentation patterns and functional groups. Softer ionisation techniques such as ESI and MALDI provide pseudomolecular ion formation, and rules in accordance with spectral information can be used to identify corresponding molecular structure and elemental composition. Table 13.3 lists some of the types of information that can be provided by mass spectrometry, and Table 13.4 gives dehnitions of molecular masses that are highly relevant in mass spectrometry. [Pg.212]

Two new independently developed techniques called Dart ° (direct analysis in real time) and Desi (desorption electrospray ionisation) are making a huge impact on mass spectrometry. Together they remove the need for sample preparation and vacuum, speed up analysis time and can work in the open air. The sample is held in a gas or liquid stream at room temperature and the impact induces the surface desorption of ions. The ions then continue into the vacuum interface of the MS for analysis. Samples can be hard, soft or even liquid in nature. Ifa et al. have used Desi to image biological samples in two dimensions, recording images of tissue sections and the relative concentrations of molecules therein. Jeol have launched a commercial Dart ion source for non-contact analysis of materials in open air under ambient conditions. [Pg.48]


See other pages where Mass spectrometry hard ionisation is mentioned: [Pg.264]    [Pg.165]    [Pg.172]    [Pg.240]    [Pg.478]    [Pg.329]    [Pg.369]    [Pg.6]   
See also in sourсe #XX -- [ Pg.37 , Pg.38 ]




SEARCH



Ionisation

Ionisation spectrometry

Ionised

Spectrometry hard ionisation

© 2024 chempedia.info