Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hamiltonian molecule

When a molecule is isolated from external fields, the Hamiltonian contains only kinetic energy operators for all of the electrons and nuclei as well as temis that account for repulsion and attraction between all distinct pairs of like and unlike charges, respectively. In such a case, the Hamiltonian is constant in time. Wlien this condition is satisfied, the representation of the time-dependent wavefiinction as a superposition of Hamiltonian eigenfiinctions can be used to detemiine the time dependence of the expansion coefficients. If equation (Al.1.39) is substituted into the tune-dependent Sclirodinger equation... [Pg.13]

Applications of quantum mechanics to chemistry invariably deal with systems (atoms and molecules) that contain more than one particle. Apart from the hydrogen atom, the stationary-state energies caimot be calculated exactly, and compromises must be made in order to estimate them. Perhaps the most useful and widely used approximation in chemistry is the independent-particle approximation, which can take several fomis. Conuiion to all of these is the assumption that the Hamiltonian operator for a system consisting of n particles is approximated by tlie sum... [Pg.24]

At this point, it is appropriate to make some conmrents on the construction of approximate wavefiinctions for the many-electron problems associated with atoms and molecules. The Hamiltonian operator for a molecule is given by the general fonn... [Pg.31]

The corresponding fiinctions i-, Xj etc. then define what are known as the normal coordinates of vibration, and the Hamiltonian can be written in tenns of these in precisely the fonn given by equation (AT 1.69). witli the caveat that each tenn refers not to the coordinates of a single particle, but rather to independent coordinates that involve the collective motion of many particles. An additional distinction is that treatment of the vibrational problem does not involve the complications of antisymmetry associated with identical fennions and the Pauli exclusion prmciple. Products of the nonnal coordinate fiinctions neveitlieless describe all vibrational states of the molecule (both ground and excited) in very much the same way that the product states of single-electron fiinctions describe the electronic states, although it must be emphasized that one model is based on independent motion and the other on collective motion, which are qualitatively very different. Neither model faithfully represents reality, but each serves as an extremely usefiil conceptual model and a basis for more accurate calculations. [Pg.35]

Physically, why does a temi like the Darling-Dennison couplmg arise We have said that the spectroscopic Hamiltonian is an abstract representation of the more concrete, physical Hamiltonian fomied by letting the nuclei in the molecule move with specified initial conditions of displacement and momentum on the PES, with a given total kinetic plus potential energy. This is the sense in which the spectroscopic Hamiltonian is an effective Hamiltonian, in the nomenclature used above. The concrete Hamiltonian that it mimics is expressed in temis of particle momenta and displacements, in the representation given by the nomial coordinates. Then, in general, it may contain temis proportional to all the powers of the products of the... [Pg.65]

Dennison coupling produces a pattern in the spectrum that is very distinctly different from the pattern of a pure nonnal modes Hamiltonian , without coupling, such as (Al.2,7 ). Then, when we look at the classical Hamiltonian corresponding to the Darling-Deimison quantum fitting Hamiltonian, we will subject it to the mathematical tool of bifiircation analysis [M]- From this, we will infer a dramatic birth in bifiircations of new natural motions of the molecule, i.e. local modes. This will be directly coimected with the distinctive quantum spectral pattern of the polyads. Some aspects of the pattern can be accounted for by the classical bifiircation analysis while others give evidence of intrinsically non-classical effects in the quantum dynamics. [Pg.67]

We have alluded to the comrection between the molecular PES and the spectroscopic Hamiltonian. These are two very different representations of the molecular Hamiltonian, yet both are supposed to describe the same molecular dynamics. Furthemrore, the PES often is obtained via ab initio quairtum mechanical calculations while the spectroscopic Hamiltonian is most often obtained by an empirical fit to an experimental spectrum. Is there a direct link between these two seemingly very different ways of apprehending the molecular Hamiltonian and dynamics And if so, how consistent are these two distinct ways of viewing the molecule ... [Pg.72]

Eurthemiore, the actual Hamiltonians obtained very closely match tliose obtained via the empirical fitting of spectra This consistency lends great confidence that both approaches are complementary, mutually consistent ways of apprehendmg real infomiation on molecules and their internal dynamics. [Pg.72]

We consider an isolated molecule in field-free space with Hamiltonian //. We let Pbe the total angular momentum operator of the molecule, that is... [Pg.138]

At this point the reader may feel that we have done little in the way of explaining molecular synnnetry. All we have done is to state basic results, nonnally treated in introductory courses on quantum mechanics, connected with the fact that it is possible to find a complete set of simultaneous eigenfiinctions for two or more commuting operators. However, as we shall see in section Al.4.3.2. the fact that the molecular Hamiltonian //coimmites with and F is intimately coimected to the fact that //commutes with (or, equivalently, is invariant to) any rotation of the molecule about a space-fixed axis passing tlirough the centre of mass of the molecule. As stated above, an operation that leaves the Hamiltonian invariant is a symmetry operation of the Hamiltonian. The infinite set of all possible rotations of the... [Pg.140]

Having done this we solve the Scln-ddinger equation for the molecule by diagonalizing the Hamiltonian matrix in a complete set of known basis fiinctions. We choose the basis functions so that they transfonn according to the irreducible representations of the synnnetry group. [Pg.140]

We hope that by now the reader has it finnly in mind that the way molecular symmetry is defined and used is based on energy invariance and not on considerations of the geometry of molecular equilibrium structures. Synnnetry defined in this way leads to the idea of consenntion. For example, the total angular momentum of an isolated molecule m field-free space is a conserved quantity (like the total energy) since there are no tenns in the Hamiltonian that can mix states having different values of F. This point is discussed fiirther in section Al.4.3.1 and section Al.4.3.2. [Pg.141]

This definition causes the wavefiinction to move with the molecule as shown for the X direction in figure Al.4,3. The set of all translation synnnetry operations / constitiites a group which we call the translational group G. Because of the imifomhty of space, G is a synnnetry group of the molecular Hamiltonian //in that all its elements commute with // ... [Pg.163]

The translational linear momentum is conserved for an isolated molecule in field free space and, as we see below, this is closely related to the fact that the molecular Hamiltonian connmites with all... [Pg.163]

Finally, we consider the complete molecular Hamiltonian which contains not only temis depending on the electron spin, but also temis depending on the nuclear spin / (see chapter 7 of [1]). This Hamiltonian conmiutes with the components of Pgiven in (equation Al.4,1). The diagonalization of the matrix representation of the complete molecular Hamiltonian proceeds as described in section Al.4,1.1. The theory of rotational synnnetry is an extensive subject and we have only scratched the surface here. A relatively new book, which is concemed with molecules, is by Zare [6] (see [7] for the solutions to all the problems in [6] and a list of the errors). This book describes, for example, the method for obtaining the fimctioiis ... [Pg.170]

Each electron in the system is assigned to either molecule A or B, and Hamiltonian operators and for each molecule defined in tenns of its assigned electrons. The unperturbed Hamiltonian for the system is then 0 = - A perturbation XH consists of tlie Coulomb interactions between the nuclei and... [Pg.186]

Considering, for simplicity, only electrostatic interactions, one may write the solute-solvent interaction temi of the Hamiltonian for a solute molecule surrounded by S solvent molecules as... [Pg.839]

Consider collisions between two molecules A and B. For the moment, ignore the structure of the molecules, so that each is represented as a particle. After separating out the centre of mass motion, the classical Hamiltonian that describes tliis problem is... [Pg.994]

The hypersurface fomied from variations in the system s coordinates and momenta at//(p, q) = /Tis the microcanonical system s phase space, which, for a Hamiltonian with 3n coordinates, has a dimension of 6n -1. The assumption that the system s states are populated statistically means that the population density over the whole surface of the phase space is unifomi. Thus, the ratio of molecules at the dividing surface to the total molecules [dA(qi, p )/A]... [Pg.1011]

The first classical trajectory study of iinimoleciilar decomposition and intramolecular motion for realistic anhannonic molecular Hamiltonians was perfonned by Bunker [12,13], Both intrinsic RRKM and non-RRKM dynamics was observed in these studies. Since this pioneering work, there have been numerous additional studies [9,k7,30,M,M, ai d from which two distinct types of intramolecular motion, chaotic and quasiperiodic [14], have been identified. Both are depicted in figure A3,12,7. Chaotic vibrational motion is not regular as predicted by tire nonnal-mode model and, instead, there is energy transfer between the modes. If all the modes of the molecule participate in the chaotic motion and energy flow is sufficiently rapid, an initial microcanonical ensemble is maintained as the molecule dissociates and RRKM behaviour is observed [9], For non-random excitation initial apparent non-RRKM behaviour is observed, but at longer times a microcanonical ensemble of states is fonned and the probability of decomposition becomes that of RRKM theory. [Pg.1026]

For some systems qiiasiperiodic (or nearly qiiasiperiodic) motion exists above the unimoleciilar tlireshold, and intrinsic non-RRKM lifetime distributions result. This type of behaviour has been found for Hamiltonians with low uninioleciilar tliresholds, widely separated frequencies and/or disparate masses [12,, ]. Thus, classical trajectory simulations perfomied for realistic Hamiltonians predict that, for some molecules, the uninioleciilar rate constant may be strongly sensitive to the modes excited in the molecule, in agreement with the Slater theory. This property is called mode specificity and is discussed in the next section. [Pg.1027]

The ability to assign a group of resonance states, as required for mode-specific decomposition, implies that the complete Hamiltonian for these states is well approxmiated by a zero-order Hamiltonian with eigenfunctions [M]. The ( ). are product fiinctions of a zero-order orthogonal basis for the reactant molecule and the quantity m. represents the quantum numbers defining ( ).. The wavefimctions / for the compound state resonances are given by... [Pg.1030]


See other pages where Hamiltonian molecule is mentioned: [Pg.24]    [Pg.32]    [Pg.64]    [Pg.64]    [Pg.67]    [Pg.68]    [Pg.71]    [Pg.81]    [Pg.138]    [Pg.139]    [Pg.144]    [Pg.145]    [Pg.155]    [Pg.156]    [Pg.158]    [Pg.170]    [Pg.171]    [Pg.171]    [Pg.171]    [Pg.172]    [Pg.181]    [Pg.221]    [Pg.235]    [Pg.643]    [Pg.1024]    [Pg.1025]    [Pg.1059]    [Pg.1061]    [Pg.1143]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



A pseudo-Jahn-Teller system modeled through generalized spin Hamiltonian the C4H4 molecule

Bent triatomic molecules Hamiltonian

Crude Born-Oppenheimer approximation hydrogen molecule, Hamiltonian

Effective Hamiltonian diatomic molecule rotational excitation

Hamiltonian diatomic molecule

Hamiltonian equations diatomic molecules

Hamiltonian for triatomic molecules

Hamiltonian hydrogen molecule

Hamiltonian operator for a molecule

Hamiltonian operators, algebraic models molecules

Hamiltonian polyatomic molecule

Hamiltonians polyatomic molecules

Harmonic oscillator hydrogen molecule, Hamiltonian

Heavy-atom molecules Hamiltonians

Hydrogen molecule Hamiltonian equation

Schrodinger equation hydrogen molecule, Hamiltonian

Tetraatomic molecules, Hamiltonian

Tetraatomic molecules, Hamiltonian equations

Triatomic molecule, vibration-rotation Hamiltonians

Triatomic molecules Hamiltonian equations

Triatomic molecules effective Hamiltonians

© 2024 chempedia.info