Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halide ions, electrochemical oxidation mediators

The incorporation of a third element, e.g. Cu, in electroless Ni-P coatings has been shown to improve thermal stability and other properties of these coatings [99]. Chassaing et al. [100] carried out an electrochemical study of electroless deposition of Ni-Cu-P alloys (55-65 wt% Ni, 25-35 wt% Cu, 7-10 wt% P). As mentioned earlier, pure Cu surfaces do not catalyze the oxidation of hypophosphite. They observed interactions between the anodic and cathodic processes both reactions exhibited faster kinetics in the full electroless solutions than their respective half cell environments (mixed potential theory model is apparently inapplicable). The mechanism responsible for this enhancement has not been established, however. It is possible that an adsorbed species related to hypophosphite mediates electron transfer between the surface and Ni2+ and Cu2+, rather in the manner that halide ions facilitate electron transfer in other systems, e.g., as has been recently demonstrated in the case of In electrodeposition from solutions containing Cl [101]. [Pg.254]

Electrochemical oxidation of aldoximes using halide ions as mediators afforded the corresponding nitrile oxides in the anode compartment, which were simultaneously reduced to nitriles by cathodic reduction (equation 15). Sodium chloride affords the best result among the supporting electrolytes (Cl > Br > 1 > C104 > TsO ). Accordingly, the electrochemical reaction of oximes carried out in the presence of dipolephiles yielded isooxazolines (equation 16). [Pg.505]

Thus in the laboratory we tend to meet almost all metals in a pure form as synthetic cationic salts of common anions. These tend to be halides or sulfates, and it is these metal salts, hydrated or anhydrous, that form the entry point to almost all of metal coordination chemistry. In nature, it is no accident that metal ions that are relatively common tend to find roles, mediated of course by their chemical and electrochemical properties. Thus iron is heavily used not only because it is common, but also because it forms strong complexes with available biomolecules and has an Fe(II)/(III) redox couple that is accessible by biological oxidants and reductants and thus useful to drive some biochemical processes. [Pg.10]


See other pages where Halide ions, electrochemical oxidation mediators is mentioned: [Pg.86]    [Pg.503]    [Pg.10]    [Pg.86]    [Pg.833]   
See also in sourсe #XX -- [ Pg.503 , Pg.505 , Pg.507 ]




SEARCH



Electrochemical oxidation

Electrochemically-mediated

Halide ions

Halide ions, electrochemical oxidation

Halide ions, oxidation

Halide oxidation

Halides oxides

Mediated electrochemical oxidation

Mediated oxidation

Mediator ion

Oxidation mediators

Oxidative mediators

© 2024 chempedia.info