Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hahn pulse sequence

The ID homonuclear Hartmann-Hahn (HOHAHA) experiment is an excellent way to determine complete coupled spin networks (18). The following pulse sequence is used ... [Pg.404]

Fig. 2.9.2 Radiofrequency, field gradient and current distributions requires a three-dimen-ionic current pulse sequences for two-dimen- sional imaging sequence [see Figure 2.9.1(a)] sional current density mapping. TE is the Hahn and multiple experiments with the orientation spin-echo time, Tc is the total application time of the sample relative to the magnetic field of ionic currents through the sample. The 180°- incremented until a full 360°-revolution is pulse combined with the z gradient is slice reached. The polarity of the current pulses... Fig. 2.9.2 Radiofrequency, field gradient and current distributions requires a three-dimen-ionic current pulse sequences for two-dimen- sional imaging sequence [see Figure 2.9.1(a)] sional current density mapping. TE is the Hahn and multiple experiments with the orientation spin-echo time, Tc is the total application time of the sample relative to the magnetic field of ionic currents through the sample. The 180°- incremented until a full 360°-revolution is pulse combined with the z gradient is slice reached. The polarity of the current pulses...
Fig. 2.9.7 Hahn spin-echo rf pulse sequence combined with bipolar magnetic field gradient pulses for hydrodynamic-dispersion mapping experiments. The lower left box indicates field-gradient pulses for the attenuation of spin coherences by incoherent displacements while phase shifts due to coherent displacements on the time scale of the experiment are compensated. The box on the right-hand side represents the usual gradient pulses for ordinary two-dimensional imaging. The latter is equivalent to the sequence shown in Figure 2.9.2(a). Fig. 2.9.7 Hahn spin-echo rf pulse sequence combined with bipolar magnetic field gradient pulses for hydrodynamic-dispersion mapping experiments. The lower left box indicates field-gradient pulses for the attenuation of spin coherences by incoherent displacements while phase shifts due to coherent displacements on the time scale of the experiment are compensated. The box on the right-hand side represents the usual gradient pulses for ordinary two-dimensional imaging. The latter is equivalent to the sequence shown in Figure 2.9.2(a).
A few relatively recent published examples of the use of NMR spectroscopy for studying polymer degradation/oxidation processes will now be discussed briefly. At the early stages of degradation, the technique can be used to provide chemical identification and quantification of oxidised species for polyolefins, oxidation sites can be identified by the chemical shifts of -CH2- groups a and ji to carbons bonded to oxygen [85]. Spin-spin relaxation times may be determined by a pulse sequence known as the Hahn spin-echo pulse sequence. [Pg.430]

Fig. 11.3 Schematic pulse sequence of Hartmann-Hahn cross polarization to transfer polarization from the / spins to the S spins by matching the rf-field amplitudes such that the condition co ( = coiS is fulfilled. Fig. 11.3 Schematic pulse sequence of Hartmann-Hahn cross polarization to transfer polarization from the / spins to the S spins by matching the rf-field amplitudes such that the condition co ( = coiS is fulfilled.
Fig. 17. NMR spectrum obtained using a single 90° pulse without H decoupling in pure DPPC bilayers at 50 °C and 1 bar (a) and P NMR spectra obtained using a fully phase-cycled Hahn echo sequence with inversely gated H decoupling in pure DPPC bilayers at 50 °C and 1 bar in the LC phase (b), 1 kbar in the GI phase (c), 1.75 kbar in the interdigitated Gi gel phase (d), 2.5 kbar in the GII gel phase (e), 3.7 kbar in the GUI gel phase (f), and 5.1 kbar in the GX gel phase (g) (after Refs. 4, 18). Fig. 17. NMR spectrum obtained using a single 90° pulse without H decoupling in pure DPPC bilayers at 50 °C and 1 bar (a) and P NMR spectra obtained using a fully phase-cycled Hahn echo sequence with inversely gated H decoupling in pure DPPC bilayers at 50 °C and 1 bar in the LC phase (b), 1 kbar in the GI phase (c), 1.75 kbar in the interdigitated Gi gel phase (d), 2.5 kbar in the GII gel phase (e), 3.7 kbar in the GUI gel phase (f), and 5.1 kbar in the GX gel phase (g) (after Refs. 4, 18).
For the basic PFGE experiment a spin-echo experiment (either the two-pulse Hahn echo sequence, Fig. la, or the three-pulse stimulated echo sequence. Fig. lb) is combined with two magnetic field gradient pulses with duration 8 and separated by the time duration A. The gradient pulses generate a magnetic... [Pg.202]

Fig. 1. The pulse sequences for the pulsed field gradient echo NMR experiment (a) Hahn echo, (b) stimulated or three-pulse sequence. Fig. 1. The pulse sequences for the pulsed field gradient echo NMR experiment (a) Hahn echo, (b) stimulated or three-pulse sequence.
Fig. 4. The CPMG pulse sequence. An echo is formed halfway between two consecutive K pulses. The echo amplitude (or the Fourier transform of the half-echo) provides an evaluation of T2 less affected by translational diffusion than in the simple Hahn sequence. The phase change of k pulses with respect to the initial Jt/2 pulse cancels the effect of (re) pulse imperfections. Fig. 4. The CPMG pulse sequence. An echo is formed halfway between two consecutive K pulses. The echo amplitude (or the Fourier transform of the half-echo) provides an evaluation of T2 less affected by translational diffusion than in the simple Hahn sequence. The phase change of k pulses with respect to the initial Jt/2 pulse cancels the effect of (re) pulse imperfections.
Users of any NMR instrument are well aware of the extensive employment of what is known as pulse sequences. The roots of the term go back to the early days of pulsed NMR when multiple, precisely spaced RF excitation pulses had been invented (17,98-110) and employed to overcome instrumental imperfections such as magnetic field inhomogeneity (Hahn echo) or receiver dead time (solid echo), monitor relaxation phenomena (saturationrrecovery, inversion recovery, CPMG), excite and/or isolate specific components of NMR signals (stimulated echo, quadrupole echo), etc. Later on, employment of pulse sequences of increasing complexity, combined with the so-called phase-cycling technique, has revolutionized FT-NMR spectroscopy, a field where hundreds of useful excitation and detection sequences (111,112) are at present routinely used to acquire qualitatively distinct ID, 2D, and 3D NMR... [Pg.435]

The pulse sequence for ID TOCSY is a ID modification of the original TOCSY experiment [2] introduced by Braunschweiler and Ernst. The TOCSY experiment was also referred to as HOHAHA (which stands for HOmonuclear HArtman-HAhn) by Bax and Davis [3]. The ID TOCSY experiment was proposed by Bax and co-workers [4, 5], and by Kessler et al. [6]. The essential features of the pulse sequence involve the use of selective excitation of a desired resonance, followed by a homonu-clear Hartman-Hahn (or isotropic) mixing period [2, 7]. That is, the unit -Pnonsei - in the 2D TOCSY pulse sequence is replaced by Fsei -where P stands for a pulse (or pulses), ti is the evolution period in the 2D experiment and r is a fixed delay. [Pg.134]

Fig. 14. Dependence of the relaxation times T2. and the fractions of protons with different mobility (f.) for unsaturated polyester on the curing time, as measured from broad line NMR ( ), Hahn spin-echo ( ) and Carr-Purcell pulse sequence (O)- Symbol x indicates the initial distribution of styrene and unsaturated polyester protons (adapted from Ref. S5))... Fig. 14. Dependence of the relaxation times T2. and the fractions of protons with different mobility (f.) for unsaturated polyester on the curing time, as measured from broad line NMR ( ), Hahn spin-echo ( ) and Carr-Purcell pulse sequence (O)- Symbol x indicates the initial distribution of styrene and unsaturated polyester protons (adapted from Ref. S5))...
Figure A1.3.2 Hahn Echo (Spin Echo) pulse sequence and schematic NMR signal from an oilseed. Label A1 indicates the position of the water plus oil sampling window. The label A2 indicates the oil-only sampling window. Figure A1.3.2 Hahn Echo (Spin Echo) pulse sequence and schematic NMR signal from an oilseed. Label A1 indicates the position of the water plus oil sampling window. The label A2 indicates the oil-only sampling window.
Figure 2. Pulse sequence diagram of a Hahn spin-echo experiment with field gradient pulses. Rf- and field gradient pulses are denoted by 90°, 180° and FGP, respectively. The FGP pulses have a length 5 and are separated by an interval A as in the spin-echo sequence given in Fig. 1. VD is a time delay which may be variable in which case also A is variable. A PFG NMR experiment may also be performed with variable 5 or gradient strength (G) and fixed A. Normally, 6 is chosen between 0 and 10 ms and A between 0 and 400 ms. The time delay t depends on the T1 relaxation time of the pure oil of the emulsion but is normally between 130 and 180 ms. Figure 2. Pulse sequence diagram of a Hahn spin-echo experiment with field gradient pulses. Rf- and field gradient pulses are denoted by 90°, 180° and FGP, respectively. The FGP pulses have a length 5 and are separated by an interval A as in the spin-echo sequence given in Fig. 1. VD is a time delay which may be variable in which case also A is variable. A PFG NMR experiment may also be performed with variable 5 or gradient strength (G) and fixed A. Normally, 6 is chosen between 0 and 10 ms and A between 0 and 400 ms. The time delay t depends on the T1 relaxation time of the pure oil of the emulsion but is normally between 130 and 180 ms.
Figure 3. High resolution proton NMR spectra of cheese, obtained by application of a Hahn spin echo pulse sequence with and without field gradient pulses. Measurements were performed on a Bruker MSL-300 spectrometer, operating at 300 MHz. The field gradient unit used with this spectrometer was home-built and the strength was calibrated to 0.25 T/m, using a 1-octanol sample for which the diffusion coefficient is known at several temperatures. Figure 3. High resolution proton NMR spectra of cheese, obtained by application of a Hahn spin echo pulse sequence with and without field gradient pulses. Measurements were performed on a Bruker MSL-300 spectrometer, operating at 300 MHz. The field gradient unit used with this spectrometer was home-built and the strength was calibrated to 0.25 T/m, using a 1-octanol sample for which the diffusion coefficient is known at several temperatures.
Figure 25 H-decoupled 31P NMR powder spectra of DMPC MLV samples as a function of concentration and pH with sorbic acid at (A) pH 4.4 and (B) 7.4 with decanoic acid at (C) pH 4.4 and (D) 7.4, obtained using a Hahn-echo pulse sequence under static condition at 35 °C.The concentrations of the weak acids are 0 (in black), 5 (in light grey) and 10 (in grey) mol %, respectively. Taken from Ref. [101]. Figure 25 H-decoupled 31P NMR powder spectra of DMPC MLV samples as a function of concentration and pH with sorbic acid at (A) pH 4.4 and (B) 7.4 with decanoic acid at (C) pH 4.4 and (D) 7.4, obtained using a Hahn-echo pulse sequence under static condition at 35 °C.The concentrations of the weak acids are 0 (in black), 5 (in light grey) and 10 (in grey) mol %, respectively. Taken from Ref. [101].
Radiofrequency (RF) power output levels should be adjusted for a Hartmann-Hahn match. The pulse sequence illustrated in Fig. 4.5.2 should be used with the following parameters ... [Pg.152]


See other pages where Hahn pulse sequence is mentioned: [Pg.302]    [Pg.302]    [Pg.302]    [Pg.302]    [Pg.302]    [Pg.302]    [Pg.268]    [Pg.7]    [Pg.207]    [Pg.212]    [Pg.116]    [Pg.118]    [Pg.116]    [Pg.10]    [Pg.134]    [Pg.53]    [Pg.43]    [Pg.59]    [Pg.70]    [Pg.82]    [Pg.19]    [Pg.23]    [Pg.153]    [Pg.336]    [Pg.336]    [Pg.12]    [Pg.254]    [Pg.255]    [Pg.278]    [Pg.282]    [Pg.299]    [Pg.241]    [Pg.307]    [Pg.161]    [Pg.151]   
See also in sourсe #XX -- [ Pg.182 ]




SEARCH



Hahn sequence

Hahne

Pulse sequenc

Pulse sequence

© 2024 chempedia.info