Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hafnium oxides, stereochemistry

Table 21.2 Oxidation states and stereochemistries of titanium, zirconium and hafnium... Table 21.2 Oxidation states and stereochemistries of titanium, zirconium and hafnium...
Table 18-A-l Oxidation States and Stereochemistry of Zirconium and Hafnium... Table 18-A-l Oxidation States and Stereochemistry of Zirconium and Hafnium...
The oxidation states and stereochemistries of zirconium and hafnium are summarized in Table 18-A-l. These elements, because of the larger atoms and ions, differ from Ti in having more basic oxides, having somewhat more extensive aqueous chemistry, and more commonly attaining higher coordination numbers, 7 and 8. They have a more limited chemistry of the III oxidation state. [Pg.879]

These two elements have very similar chemistries, though not so nearly identical as in the case of zirconium and hafnium. They have very little cationic behavior, but they form many complexes in oxidation states II, III, IV, and V. In oxidation states II and III M—M bonds are fairly common and in addition there are numerous compounds in lower oxidation states where metal atom clusters exist. An overview of oxidation states and stereochemistry (excluding the cluster compounds) is presented in Table 18-B-l. In discussing these elements it will be convenient to discuss some aspects (e.g., oxygen compounds, halides, and clusters) as classes without regard to oxidation state, while the complexes are more conveniently treated according to oxidation state. [Pg.895]

The most common coordination number of titanium is six, although four-, five-, seven-, and eight-coordinate compounds are known (Table 2). Table 3 summarizes the common oxidation states of titanium with the associated coordination numbers and stereochemistries. Zirconium shows a similar range of oxidation states (see Zirconium Hafnium Inorganic Coordination Chemistry), however, Zr and Flfr are much less stable, relative to Zr and Hf, than is the case for titanium. [Pg.4902]


See other pages where Hafnium oxides, stereochemistry is mentioned: [Pg.136]    [Pg.927]    [Pg.3295]   
See also in sourсe #XX -- [ Pg.47 , Pg.62 ]




SEARCH



Oxidation stereochemistry

Oxide stereochemistry

© 2024 chempedia.info