Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gutta percha Trans-1,4-polyisoprene

Figure 13-2 Schematic representation of the configuration of chains in gutta-percha (trans-1,4-polyisoprene)... Figure 13-2 Schematic representation of the configuration of chains in gutta-percha (trans-1,4-polyisoprene)...
Polymerised isoprene. Naturally-occurring polyisoprenes are natural rubber (cA-form) and gutta percha (trans- form). The use of stereo specific catalysts has made possible the manufacture of synthetic cA-polyisoprene and fraws-polyisoprene both of which are now available commercially. [Pg.49]

In contrast to natural rubber (cis-polyisoprene), gutta-percha (trans-poly-isoprene) is rather hard, but not brittle, and only a little elastic. It softens at about 30 °C, becomes plastic at 60 °C, and melts under decomposition at 100°C. [Pg.72]

Figure 1.3 shows several repeat units of cis-l,4-polyisoprene and trans-1,4-polyisoprene. Natural rubber is the cis isomer of 1,4-polyisoprene, and gutta-percha is the trans isomer. [Pg.28]

Natural mbber (Hevea) is 100% i7j -l,4-polyisoprene, whereas another natural product, gutta-percha, a plastic, consists of the trans-1,4 isomer. Up until the mid-1900s, all attempts to polymerize isoprene led to polymers of mixed-chain stmcture. [Pg.469]

Related to stereoregularity is the possibility of cis, trans isomerism. The molecule of natural rubber is a c/s-1,4-polyisoprene whilst that of gutta percha is the trans isomer. [Pg.69]

We might well expect this differing stereochemistry to have a marked effect on the properties of the polymer, and this is borne out by the two naturally occurring polyisoprenes, natural rubber and gutta percha. The former, which before vulcanisation is soft and tacky, has all cis junctions in its chains while the latter, which is hard and brittle, has all trans junctions. [Pg.323]

Figure 13 Chemical structures of trans and cis isomers of 1,4 polyisoprene (gutta-percha and natural rubber, respectively). Figure 13 Chemical structures of trans and cis isomers of 1,4 polyisoprene (gutta-percha and natural rubber, respectively).
Butadiene and isoprene have two double bonds, and they polymerize to polymers with one double bond per monomeric unit. Hence, these polymers have a high degree of unsaturation. Natural rubber is a linear cis-polyisoprene from 1,4-addition. The corresponding trans structure is that of gutta-percha. Synthetic polybutadienes and polyisoprenes and their copolymers usually contain numerous short-chain side branches, resulting from 1,2-additions during the polymerization. Polymers and copolymers of butadiene and isoprene as well as copolymers of butadiene with styrene (GR-S or Buna-S) and copolymers of butadiene with acrylonitrile (GR-N, Buna-N or Perbunan) have been found to cross-link under irradiation. [Pg.346]

This polymer is a hard plastic that occurs naturally as gutta-percha or balata. Since the trans isomer packs better than the cis isomer, it has a higher specific gravity, a higher degree of crystallinity, and a higher melting point (67 C) than the ds isomer of polyisoprene. The chemical and the solvent resistance of the trans polymer are simitar to those of the ds polymer. [Pg.143]

Natural rubber is a polymer of isoprene- most often cis-l,4-polyiso-prene - with a molecular weight of 100,000 to 1,000,000. Typically, a few percent of other materials, such as proteins, fatty acids, resins and inorganic materials is found in natural rubber. Polyisoprene is also created synthetically, producing what is sometimes referred to as "synthetic natural rubber". Owing to the presence of a double bond in each and every repeat unit, natural rubber is sensitive to ozone cracking. Some natural rubber sources called gutta percha are composed of trans-1,4-poly isoprene, a structural isomer which has similar, but not identical properties. Natural rubber is an elastomer and a thermoplastic. However, it should be noted that as the rubber is vulcanized it will turn into a thermoset. Most rubber in everyday use is vulcanized to a point where it shares properties of both, i.e., if it is heated and cooled, it is degraded but not destroyed. [Pg.89]

In 1954, 1,4-cA-polyisoprene, the synthetic equivalent of natural rubber, was obtained in the laboratories of Goodrich-Gulf [22] by isoprene polymerisation with new catalysts developed by Natta, and later on 1,4-trans-polyisoprene, a synthetic analogue of gutta percha, was obtained by Natta et al. [23]. [Pg.29]

Some of the polybutadienes obtained with transition metal-based coordination catalysts have practical significance the most important is cA-1,4-polybutadiene, which exhibits excellent elastomeric properties. As regards isoprene polymers, two highly stereoregular polyisoprenes, a cA-1,4 polymer (very similar to natural rubber) and a trans- 1,4-polymer (of equal structure to that of gutta percha or balata) have been obtained with coordination catalysts. Various polymers of mixed 3,4 structure, amorphous by X-ray, were also obtained [7]. [Pg.280]

By contrast, cis- 1,4-polyisoprene is produced in limited amounts, since it is not price competitive with natural rubber (owing to the relatively high costs of manufacturing the isoprene monomer). The same applies to trans- 1,4-polyisoprene, which is more expensive than its natural counterparts gutta percha and balata. [Pg.320]

Recall that we introduced the idea of stereoisomers in Chapter 3 in the section on natural rubber. The stereochemistry in polyisoprene arises because of the rigid nature of the carbon-carbon double bond. Natural rubber is cis-polyisoprene while gutta percha is trans-polyisoprene, the two polymers having drastically different properties... [Pg.103]

The polymer in natural rubber (from the Hevea bmsiliensis tree) is pure cis polyisoprene gutta percha and balata are composed of the trans isomer. [Pg.692]

IP-PP and DMA-PP can yield volatile C3 hemiterpenes. At the other extreme, extensive polymerization of the C3-pyrophosphates (with release of pyrophosphate, PP ) yields the formation of the plant latex polymers such as eis-polyisoprenes (rubber) and trans-polyisoprenes (gutta-percha). In between these extremes, a variety of monoterpenes, sesquiterpenes, triterpenes and C3() carotenes derive from these C3-pyrophosphate precursors. [Pg.34]

Figure 32.4. Extended chains of (a) natural rubber, c/5-l,4-polyisoprene, and of (6) gutta percha, its trans stereoisomer. Figure 32.4. Extended chains of (a) natural rubber, c/5-l,4-polyisoprene, and of (6) gutta percha, its trans stereoisomer.
Polyisoprene (R = CH3) with a c/s-1,4 configuration is common in nature in different species of piants and is known as natural rubber. Trans-polyisoprene is found in two naturai resins known as gutta-percha and balata. Natural or synthetic polyisoprenes, as well as polybutadiene, are among the most common elastomers with many practical uses. Other elastomers with extensive practical applications are copolymers, many of them using butadiene or isoprene in the starting monomer mixture. [Pg.439]


See other pages where Gutta percha Trans-1,4-polyisoprene is mentioned: [Pg.17]    [Pg.626]    [Pg.17]    [Pg.1]    [Pg.17]    [Pg.467]    [Pg.3]    [Pg.356]    [Pg.884]    [Pg.421]    [Pg.29]    [Pg.24]    [Pg.11]    [Pg.46]    [Pg.297]    [Pg.634]    [Pg.78]    [Pg.168]    [Pg.467]    [Pg.3]    [Pg.88]    [Pg.403]    [Pg.429]    [Pg.431]    [Pg.3]    [Pg.131]    [Pg.42]    [Pg.666]   


SEARCH



Gutta

Gutta percha

Guttae

Polyisoprene

Polyisoprenes

Trans- 1,4-Polyisoprene

© 2024 chempedia.info