Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Growth activation energy

The explosive character of the photoinduced solid-state chlorination reaction of MCH was first described in ref. 31, the phenomenon being interpreted on the assumption of a decrease in the chain-growth activation energy due to the thermoelastic stresses induced in the sample. A possible role of brittle fracture was not considered in that case. However, it would be of interest also to take account of that effect under the conditions used in ref. 31, the more so in that the evaluated values of stresses required to reduce the activation energy markedly are far above the thresholds of brittle fracture of the corresponding matrices (for details, see Section XII). [Pg.345]

These equations have been successfully used in practice to model crystallization data. Since equations have been derived for a number of Avrami models, this approach has the advantage that the model does not have to be known a priori, but instead can be chosen based on which equations fit the data (along with some physical insight). It is also possible to perform experiments at different temperatures or under nonisothermal conditions to facilitate further analyses such as obtaining growth activation energies, and the reader is referred to other works for detailed treatments (Khawam and Flanagan 2006). [Pg.32]

In equation (6), kg is the growth rate constant g relates the growth rate to the supersaturation. Eg is the growth activation energy and R is the ideal gas constant. [Pg.529]

As can be seen from Fig. 7.43, the average value of micro-stress decrease when temperature increasing after 10 min rapid decrease of stress, it basically unchanged later. The rate of increase of particle size distribution at low temperatures is small from wide to narrow, representing the self-spread movement on the edge of nanocrystalline Fe particle is relatively slow, and the crystal growth activation energy is about 100 kJ mol F... [Pg.638]

At high-temperature, initial growth of particle is rapid, the particle size distribution has become very wide, the crystal growth activation energy increases to 175kJ mol" which mean nano-iron crystal strengthens its self-spread ability at the edge of coarse particles. [Pg.638]

The applications of this simple measure of surface adsorbate coverage have been quite widespread and diverse. It has been possible, for example, to measure adsorption isothemis in many systems. From these measurements, one may obtain important infomiation such as the adsorption free energy, A G° = -RTln(K ) [21]. One can also monitor tire kinetics of adsorption and desorption to obtain rates. In conjunction with temperature-dependent data, one may frirther infer activation energies and pre-exponential factors [73, 74]. Knowledge of such kinetic parameters is useful for teclmological applications, such as semiconductor growth and synthesis of chemical compounds [75]. Second-order nonlinear optics may also play a role in the investigation of physical kinetics, such as the rates and mechanisms of transport processes across interfaces [76]. [Pg.1289]

This situation seems highly probable for step-growth polymerization because of the high activation energy of many condensation reactions. The constants for the diffusion-dependent steps, which might be functions of molecular size or the extent of the reaction, cancel out. [Pg.361]

Fig. 3. Curve ihustrating the activation energy (barrier) to nucleate a crystalline phase. The critical number of atoms needed to surmount the activation barrier of energy AG is n and takes time equal to the iacubation time. One atom beyond n and the crystahite is ia the growth regime. Fig. 3. Curve ihustrating the activation energy (barrier) to nucleate a crystalline phase. The critical number of atoms needed to surmount the activation barrier of energy AG is n and takes time equal to the iacubation time. One atom beyond n and the crystahite is ia the growth regime.
The primary cation CH20H is created in the cage reaction under photolysis of an impurity or y-radiolysis. The rate constant of a one link growth, found from the kinetic post-polymerization curves, is constant in the interval 4.2-12 K where = 1.6 x 10 s . Above 20K the apparent activation energy goes up to 2.3 kcal/mol at 140K, where k 10 s L... [Pg.129]

This is the general expression for film growth under an electric field. The same basic relationship can be derived if the forward and reverse rate constants, k, are regarded as different, and the forward and reverse activation energies, AG are correspondingly different these parameters are equilibrium parameters, and are both incorporated into the constant A. The parameters A and B are constants for a particular oxide A has units of current density (Am" ) and B has units of reciprocal electric field (mV ). Equation 1.114 has two limiting approximations. [Pg.130]

The elementary process of growth is treated as the attaching or detaching of one repeating unit on the surface. There are two possible ways in which a unit may add to a nucleus, which are shown in Fig. 3.20 (from Ref. [146]). A unit may diffuse from the liquid to the side of the nucleus with a small activation energy compared with kT. However, it is very difficult for a new unit from the liquid to add directly onto the fold surface, and the thickening of the nucleus is due to the... [Pg.289]


See other pages where Growth activation energy is mentioned: [Pg.165]    [Pg.319]    [Pg.228]    [Pg.165]    [Pg.319]    [Pg.228]    [Pg.753]    [Pg.2724]    [Pg.371]    [Pg.339]    [Pg.37]    [Pg.47]    [Pg.344]    [Pg.63]    [Pg.106]    [Pg.128]    [Pg.4]    [Pg.261]    [Pg.276]    [Pg.325]    [Pg.129]    [Pg.129]    [Pg.970]    [Pg.984]    [Pg.1039]    [Pg.1059]    [Pg.1301]    [Pg.1308]    [Pg.96]    [Pg.97]    [Pg.432]    [Pg.449]    [Pg.15]    [Pg.240]    [Pg.159]    [Pg.160]    [Pg.164]    [Pg.180]    [Pg.225]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Activation energies step-growth polymerizations

Activation energy for growth rates

Active growth

Crystal growth activation energies

Filament growth, activation energies

© 2024 chempedia.info