Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

On-line gas chromatography

The use of mass spectra to identify dangerous drugs, both for diagnosis in a hospital setting and in forensics, is an important application. Applications in other fields include identifying such substances as pollutants (environmental work), natural products (biochemistry), flavor components (the food industry), or hydrocarbons (the petroleum industry). Often, the analyst begins with a complex mixture which can be separated by gas chromatography on-line with a mass spectrometer. [Pg.471]

Houben, R. J., H. G. M. Janssen, P. A. Leclercq, J. A. Rijks, and C. A. Cramers, 1990. Supercritical uid extraction-capillary gas chromatography On-line coupling with a programmed temperature vaporizer. T... [Pg.37]

G. Guichon and C.L. Guillemin, Quantitative Gas Chromatography for Laboratory and On-Line Process Control, Elsevier, Amsterdam, 1988. ISBN 0444428577. [Pg.47]

Figure 2.6 Gas cluotnatograni of a 10 ml test sample containing C I4 C26 alkanes in -hexane (about 1 ppb each) the earner gas (H2) inlet pressure was 2.5 bar for a 22 m X 0.32 mm id separation column coupled with a 2 m X 0.32 mm id uncoated precolumn (no vapour exit). Reprinted from Journal of High Resolution Chromatography, 9, K. Grob et al., Concunent solvent evaporation for on-line coupled HPLC-HRGC , pp. 95-101, 1986, with peimission from Wiley-VCH. Figure 2.6 Gas cluotnatograni of a 10 ml test sample containing C I4 C26 alkanes in -hexane (about 1 ppb each) the earner gas (H2) inlet pressure was 2.5 bar for a 22 m X 0.32 mm id separation column coupled with a 2 m X 0.32 mm id uncoated precolumn (no vapour exit). Reprinted from Journal of High Resolution Chromatography, 9, K. Grob et al., Concunent solvent evaporation for on-line coupled HPLC-HRGC , pp. 95-101, 1986, with peimission from Wiley-VCH.
Figure 2.12 Schematic representation of an on-line SPE-GC system consisting of three switching valves (VI-V3), two pumps (a solvent-delivery unit (SDU) pump and a syringe pump) and a GC system equipped with a solvent-vapour exit (SVE), an MS instrument detector, a retention gap, a retaining precolumn and an analytical column. Reprinted from Journal of Chromatography, AIIS, A. J. H. Eouter et al, Analysis of microcontaminants in aqueous samples hy fully automated on-line solid-phase extraction-gas chromatography-mass selective detection , pp. 67-83, copyright 1996, with permission from Elsevier Science. Figure 2.12 Schematic representation of an on-line SPE-GC system consisting of three switching valves (VI-V3), two pumps (a solvent-delivery unit (SDU) pump and a syringe pump) and a GC system equipped with a solvent-vapour exit (SVE), an MS instrument detector, a retention gap, a retaining precolumn and an analytical column. Reprinted from Journal of Chromatography, AIIS, A. J. H. Eouter et al, Analysis of microcontaminants in aqueous samples hy fully automated on-line solid-phase extraction-gas chromatography-mass selective detection , pp. 67-83, copyright 1996, with permission from Elsevier Science.
Figure 2.16 Clirotnatograms of a pentane extract of a water sample containing 200 ppb of a naphtha fraction (a) sample extracted by using a continuous flow system, where a pressurized bottle was employed as the sample-delivery system (b) batch-extracted sample. Reprinted from Journal of Chromatography, A 330, J. Roeraade, Automated monitoring of organic Race components in water. I. Continuous flow exti action together with on-line capillary gas cliro-matography , pp. 263 - 274, copyrigth 1985, with permission from Elsevier Science. Figure 2.16 Clirotnatograms of a pentane extract of a water sample containing 200 ppb of a naphtha fraction (a) sample extracted by using a continuous flow system, where a pressurized bottle was employed as the sample-delivery system (b) batch-extracted sample. Reprinted from Journal of Chromatography, A 330, J. Roeraade, Automated monitoring of organic Race components in water. I. Continuous flow exti action together with on-line capillary gas cliro-matography , pp. 263 - 274, copyrigth 1985, with permission from Elsevier Science.
Figure 2.17 Schematic representation of the set-up used for on-line liquid-liquid exti action coupled with capillary GC when using a membrane phase separator. Reprinted from Journal of High Resdution Chromatography, 13, E. C. Goosens et al., Determination of hexachloro-cyclohexanes in gi ound water by coupled liquid-liquid extraction and capillaiy gas cliro-matography , pp. 438-441, 1990, with permission from Wiley-VCH. Figure 2.17 Schematic representation of the set-up used for on-line liquid-liquid exti action coupled with capillary GC when using a membrane phase separator. Reprinted from Journal of High Resdution Chromatography, 13, E. C. Goosens et al., Determination of hexachloro-cyclohexanes in gi ound water by coupled liquid-liquid extraction and capillaiy gas cliro-matography , pp. 438-441, 1990, with permission from Wiley-VCH.
Coupled liquid chromatography-gas chromatography is an excellent on-line method for sample enrichment and sample clean-up. Recently, many authors have reviewed in some detail the various LC-GC transfer methods that are now available (1, 43-52). For the analysis of normal phase eluents, the main transfer technique used is, without doubt, concurrent eluent evaporation employing a loop-type interface. The main disadvantage of this technique is co-evaporation of the solute with the solvent. [Pg.38]

Figure 2.20 Schematic representation of the set-up used for on-line exti action-GC VI and V2, valves PI and P2, syringe pumps L, sample loop CC flow, countercunent flow CT, cold ti ap. Reprinted from Journal of High Resolution Chromatography, 16, H. G. J. Mol et ai, Use of open-tubular tapping columns for on-line exti action-capillary gas cluomatography of aqueous samples , pp. 413-418, 1993, with permission from Wiley-VCH. Figure 2.20 Schematic representation of the set-up used for on-line exti action-GC VI and V2, valves PI and P2, syringe pumps L, sample loop CC flow, countercunent flow CT, cold ti ap. Reprinted from Journal of High Resolution Chromatography, 16, H. G. J. Mol et ai, Use of open-tubular tapping columns for on-line exti action-capillary gas cluomatography of aqueous samples , pp. 413-418, 1993, with permission from Wiley-VCH.
Reprinted from Journal of High Resolution Chromatography, 21, D. Juchelka et al., Multidimensional gas chromatography coupled on-line with isotype ratio mass specti ometry (MDGC-IRMS) progress in the analytical authentication of genuine flavor components , pp. 145-151, 1998, with peraiission from Wiley-VCH. [Pg.228]

F. J. Senorans, J. Tabera and M. Herraiz, Rapid separation of free sterols in edible oils by on-line coupled reversed phase liquid chr omatography-gas chromatography , 7. Agric. Food. Chem. 44 3189-3192 (1996). [Pg.247]

Figure 11.12 GC analysis of (a) urine sample spiked with opiates 3 p.g/ml) and (b) blank urine sample. Peak identification is as follows 1, dihydrocodeine 2, codeine 3, ethylmor-phine 4, moipliine 5, heroin. Reprinted from Journal of Chromatography, A 771, T. Hyotylainen et al., Determination of morphine and its analogues in urine by on-line coupled reversed-phase liquied cliromatography-gas clrromatography with on-line derivatization, pp. 360-365, copyright 1997, with permission from Elsevier Science. Figure 11.12 GC analysis of (a) urine sample spiked with opiates 3 p.g/ml) and (b) blank urine sample. Peak identification is as follows 1, dihydrocodeine 2, codeine 3, ethylmor-phine 4, moipliine 5, heroin. Reprinted from Journal of Chromatography, A 771, T. Hyotylainen et al., Determination of morphine and its analogues in urine by on-line coupled reversed-phase liquied cliromatography-gas clrromatography with on-line derivatization, pp. 360-365, copyright 1997, with permission from Elsevier Science.
E. C. Goosens, D. de Jong, G. J. de Jong and U. A. Th Brinkman, Reversed-phase liquid cliromatography coupled on-line with capillary gas chromatography. II. Use of a solvent vapor exit to ina ease introduction volumes and introduction rates into the gas cliromato-graplT, J. Microcolumn Sep 6 207-215 (1994). [Pg.299]

J. Ogorka, G. Schwinger, G. Bmat and V. Seidel, On-line coupled reversed-phase high-performance liquid cliromatography-gas chromatography-mass specti ometi y , A powerful tool for the identification of unknown impurities in pharmaceutical products , J. Chromatogr. 626 87-96 (1992). [Pg.299]

T. Hyotylainen, T. Andersson and M. E. Riekkola, Eiquid cliromatographic sample cleanup coupled on-line with gas chromatography in the analysis of beta-blockers in human serum and urine , 7. Chromatogr. Sci. 35 280-286 (1997). [Pg.299]

Figure 12.1 Analysis of Tinuvin 1577 in 30% virgin olive oil (in hexane), showing (a) the gas cliromatogram comparing the pure oil with a sample at the Tinuvin 1577 detection limit concentration, and (b) the coixesponding liquid chromatogram. Reprinted from Journal of High Resolution Chromatography, 20, A. L. Baner and A. Guggenberger, Analysis of Tinuvin 1577 polymer additive in edible oils using on-line coupled HPLC-GC , pp. 669-673, 1997, with pennission from Wiley-VCH. Figure 12.1 Analysis of Tinuvin 1577 in 30% virgin olive oil (in hexane), showing (a) the gas cliromatogram comparing the pure oil with a sample at the Tinuvin 1577 detection limit concentration, and (b) the coixesponding liquid chromatogram. Reprinted from Journal of High Resolution Chromatography, 20, A. L. Baner and A. Guggenberger, Analysis of Tinuvin 1577 polymer additive in edible oils using on-line coupled HPLC-GC , pp. 669-673, 1997, with pennission from Wiley-VCH.

See other pages where On-line gas chromatography is mentioned: [Pg.9]    [Pg.250]    [Pg.88]    [Pg.9]    [Pg.9]    [Pg.250]    [Pg.88]    [Pg.9]    [Pg.214]    [Pg.131]    [Pg.260]    [Pg.761]    [Pg.102]    [Pg.152]    [Pg.60]    [Pg.2207]    [Pg.15]    [Pg.16]    [Pg.17]    [Pg.32]    [Pg.34]    [Pg.35]    [Pg.36]    [Pg.39]    [Pg.88]    [Pg.147]    [Pg.235]    [Pg.250]    [Pg.251]    [Pg.276]    [Pg.278]    [Pg.299]    [Pg.299]    [Pg.299]    [Pg.303]   
See also in sourсe #XX -- [ Pg.243 ]




SEARCH



Gas lines

On-line chromatography

On-line coupled liquid chromatography-gas

© 2024 chempedia.info