Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gallium-modified ZSM-5

The aromatization of liquefied petroleum gases (LPG) has been investigated for more than a decade due to its economical and strategic importance for the exploitation of natural gas reserves and valorization of light hydrocarbons obtained from petroleum refining. Commercially, these reactions using gallium modified ZSM-5 zeolite catalysts are known as Cyclar process, developed jointly by UOP and BP [1]. [Pg.401]

The pulse experiments demonstrated that active sites for propane dehydrogenation are formed upon exposure of the oxide form of gallium modified ZSM-5 to propane itself. A constant 1 1 ratio of hydrogen produced to propane consumed is attained after a number of pulses with little propene formation, which suggests that, after propane dehydrogenation to propane, aromatization proceeds through hydrogen transfer reactions. [Pg.404]

Recent advances have shown zeolites are effective in catalysing the direct conversion of synthesis gas to motor fuels. The MTO (methanol-to-olefins) process converts MeOH to C2-C4 alkenes and is also catalysed by ZSM-5. The development of a gallium-modified ZSM-5 catalyst (Ga-ZSM-5) has provided an efficient catalyst for the production of aromatic compounds from mixtures of C3 and C4 alkanes (commonly labelled LPG). [Pg.931]

A completely new approach for BTX production has emerged in recent years. It converts to paraffins into aromatics using a modified ZSM-5 zeoHte catalyst which contains gallium (19). An example of this approach, the Cyclar process, has been in commercial operation by British Petroleum at Grangemouth, Scotiand since August 1990 (20). It uses C —feed and employs UOP s CCR technology to compensate for rapid catalyst coking. [Pg.310]

One Interesting and industrially important process developed recently,"the cyclar process" is the catalytic aromatization of light (C3-C5) hydrocarbons over pentasil based catalysts. These new classes of solids have been widely studied (1-9). These Investigations led to the conclusion that the catalysts consisting of gallium, zinc, Pt, and modified H-ZSM-5 were more active and more selective towards aromatics than the parent H-ZSM-5 zeolite. The formation of aromatics from light alkanes comprised several main hydrocarbon reactions alkane... [Pg.267]

Kazansky V B, Subbotina I R, van Santen R A and Hensen E J M (2004), DRIETS study of the chemical state of modifying gallium ions in reduced Ga/ZSM-5 prepared by impregnation. I. Observation of gallium hydrides and application of CO adsorption as a molecular probe for reduced gallium ions , J Catal, 221, 263. [Pg.255]

The catalyst in MOI contains only ZSM-5 and/or ZSM-11 without any large pore zeolites. The ZSM-5 and/or ZSM- 11 preferably have a high initial silica/aliunina molar ratio and are modified by phosphorus and metals such as gallium. [Pg.163]


See other pages where Gallium-modified ZSM-5 is mentioned: [Pg.807]    [Pg.217]    [Pg.276]    [Pg.807]    [Pg.217]    [Pg.276]    [Pg.183]    [Pg.325]    [Pg.687]    [Pg.270]    [Pg.352]    [Pg.404]    [Pg.96]    [Pg.353]    [Pg.355]    [Pg.366]   
See also in sourсe #XX -- [ Pg.217 ]




SEARCH



© 2024 chempedia.info