Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functional groups, identification copolymers

More recently, the same author [41] has described polymer analysis (polymer microstructure, copolymer composition, molecular weight distribution, functional groups, fractionation) together with polymer/additive analysis (separation of polymer and additives, identification of additives, volatiles and catalyst residues) the monograph provides a single source of information on polymer/additive analysis techniques up to 1980. Crompton described practical analytical methods for the determination of classes of additives (by functionality antioxidants, stabilisers, antiozonants, plasticisers, pigments, flame retardants, accelerators, etc.). Mitchell... [Pg.18]

Identification of a polymer (particularly copolymers or terpolymers) is often not as simple as this, and obtaining a detailed picture of the microstructure of the polymer is necessary. Techniques that may be used, in addition to elemental and functional group analysis, include spectroscopic techniques such as infrared, nuclear magnetic resonance, proton magnetic resonance, and systematic investigations by pyrolysis-gas chromatography. [Pg.423]

The manufacture of the large variety of polyamides (commonly referred to as nylons) occurs through polycondensation of amino carboxylic acids (or functional derivatives of them, e.g. lactams) and from diamines and dicarboxylic acids. Labeling the amino groups with A and the carboxyl groups with B allows differentiation of the different chemical structures between the two types AB (from amino carboxylic acids) and AA-BB (from diamines and dicarboxylic acids). The number of C atoms in the monomers acts as a code number for the identification of the polyamides. The polycaprolactam manufactured from caprolactam (type AB) is then called polyamide 6 (PA 6). The number of carbon atoms in the diamine is given first for type AA-BB followed by the number of atoms in the dicarboxylic acid, e.g. PA 66 for polyhexamethylenedia-dipic amide from hexamethylenediamine and adipic acid. For copolymers the components are separated by a slash, e.g. PA 66/6 (90 10) is a copolymer composed of 90 parts PA 66 and 10 parts PA 6. [Pg.33]


See other pages where Functional groups, identification copolymers is mentioned: [Pg.149]    [Pg.174]    [Pg.153]    [Pg.322]    [Pg.258]    [Pg.243]    [Pg.238]    [Pg.259]    [Pg.520]    [Pg.189]    [Pg.200]    [Pg.257]    [Pg.101]   
See also in sourсe #XX -- [ Pg.116 , Pg.117 ]




SEARCH



Copolymer groups

Copolymers functionalized

Functional copolymers

Functional group identification

© 2024 chempedia.info