Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fullerene derivatives triplet properties

The ability of a dendritic shell to encapsulate a functional core moiety and to create a specific site-isolated microenvironment capable of affecting the molecular properties has been intensively explored in recent years [19]. A variety of experimental techniques have been employed to evidence the shielding of the core moiety and to ascertain the effect of the dendritic shell [19, 20]. Dendrimers with a fullerene core appear to be appealing candidates to evidence such effects resulting from the presence of the surrounding dendritic branches. Effectively, the lifetime of the first triplet excited state of fullerene derivatives... [Pg.88]

Prat F, Stackow R, Bernstein R et al. (1999) Triplet-state properties and singlet oxygen generation in a homologous series of functionalized fullerene derivatives. J Phys Chem. 103 7230-7235. [Pg.155]

In this chapter we have described the photophysics and photochemistry of C6o/C70 and of fullerene derivatives. On the one hand, C6o and C70 show quite similar photophysical properties. On the other hand, fullerene derivatives show partly different photophysical properties compared to pristine C6o and C70 caused by pertuba-tion of the fullerene s TT-electron system. These properties are influenced by (1) the electronic structure of the functionalizing group, (2) the number of addends, and (3) in case of multiple adducts by the addition pattern. As shown in the last part of this chapter, photochemical reactions of C60/C70 are very useful to obtain fullerene derivatives. In general, the photoinduced functionalization methods of C60/C70 are based on electron transfer activation leading to radical ions or energy transfer processes either by direct excitation of the fullerenes or the reaction partner. In the latter case, both singlet and triplet species are involved whereas most of the reactions of electronically excited fullerenes proceed via the triplet states due to their efficient intersystem crossing. [Pg.740]

The nature of the lowest-lying excited states of the fullerenes has been difficult to identify with much certainty. From Shpol skii-type luminescence spectra recorded at 1.5 K it has been concluded that the first-excited singlet state in C70 is of A 2 character. The origins of the lowest energy transitions in Ceo, namely Si(T]g) and S2(Gg), have been assigned on the basis of fluorescence and excitation spectra, supported by theoretical calculations. " The luminescence properties and relaxation dynamics of single crystals of Qo have been described while related measurements have been made for solid films of Ceo " Similar studies have reported the luminescence spectral properties of 50 trapped inside the cavities of NiY zeolites. An analysis of the fine structure of electron-vibrational spectra has been made for 50 and its derivatives in a solid toluene matrix. The rate of triplet energy transfer between fullerenes in toluene solution has been measured as a function of temperature and used to derive thermodynamic parameters for the transfer process. ... [Pg.39]


See other pages where Fullerene derivatives triplet properties is mentioned: [Pg.108]    [Pg.168]    [Pg.654]    [Pg.23]    [Pg.206]    [Pg.168]    [Pg.277]    [Pg.75]    [Pg.39]    [Pg.92]    [Pg.656]    [Pg.213]    [Pg.205]    [Pg.24]    [Pg.38]    [Pg.213]   
See also in sourсe #XX -- [ Pg.654 ]




SEARCH



Derivative properties

Fullerenes derivatives

Fullerenes properties

© 2024 chempedia.info