Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fuel equilibrium

At the high temperatures found in MHD combustors, nitrogen oxides, NO, are formed primarily by gas-phase reactions, rather than from fuel-bound nitrogen. The principal constituent is nitric oxide [10102-43-9] NO, and the amount formed is generally limited by kinetics. Equilibrium values are reached only at very high temperatures. NO decomposes as the gas cools, at a rate which decreases with temperature. If the combustion gas cools too rapidly after the MHD channel the NO has insufficient time to decompose and excessive amounts can be released to the atmosphere. Below about 1800 K there is essentially no thermal decomposition of NO. [Pg.422]

When no net current is flowing, the equilibrium potential of the fuel cell is given by the Nernst equation ... [Pg.2410]

To be ionicaUy conducting, the fluorocarbon ionomer must be wet under equilibrium conditions, it will contain about 20 percent water. The operating temperature of the fuel cell must be less than 373 K (212°F), therefore, to prevent the membrane from drying out. [Pg.2412]

This result is intuitively correct, since it says that at adiabatic conditions the maximum fuel delivered to the inside gives the maximum heat to be removed by heat conduction, and this gives the maximum inside temperature. Yet this is valid only for static or equilibrium conditions. [Pg.27]

The ideal exhaust gas composition is given in Table II, based on a fuel with an H to C molar ratio of 2.103, and assuming that the equilibrium is established and frozen at 4000°R 25). To complete the combustion in a rich exhaust, secondary air must be supplied to cover the deficiency in oxidants. [Pg.66]

One of the most Important thermophysical properties of reactor fuel In reactor safety analysis Is vapor pressure, for which data are needed for temperatures above 3000 K. We have recently completed an analysis of the vapor pressure and vapor composition In equilibrium with the hypostolchiometric uranium dioxide condensed phase (1 ), and we present here a similar analysis for the plutonium/oxygen (Pu/0) system. [Pg.128]

Rain in equilibrium with atmospheric C02, but uncontaminated by industrial emissions, should have a pH of 5.7. However, atmospheric pollution from burning fossil fuels has resulted in acid rain of pH as low as 3.5 (24). If this condition continues for a long time, it may lead to a change in groundwater composition, which may considerably change the migration of plutonium in nature. [Pg.280]

Reactions (3.9) to (3.11) proceed rapidly to equilibrium in most anodic solid oxide fuel cell (SOFC) environments and thus H2 (Eq. 3.8) rather than CH4 is oxidized electrochemically resulting in low polarization losses. Upon doubling the stoichiometric coefficients of equation (3.8), summing equations (3.8) to (3.11) and dividing the resulting coefficients by two one obtains ... [Pg.98]

Assuming that the carbon cycle of Fig. 4-12 will remain a closed system over several thousands of years, we can ask how the equilibrium distribution within the system would change after the introduction of a certain amount of fossil carbon. Table 4-2 contains the answer for two different assumptions about the total input. The first 1000 Pg corresponds to the total input from fossil fuel up to about the year 2000 the second (6000 Pg) is roughly equal to the now... [Pg.72]

The development of models for HCSI combustion has been governed by the similarity of flame growth in HCSI engines and premixed turbulent flames. Thin laser-sheets of only 300 pm thickness were used to measure high-resolution cross sections of the temperature and OH radical distribution in flames of a propane-fueled engine. Figure 8.2.3 illustrates the structure where temperature and OH concentration are closely coupled with super equilibrium values for the OH radical close to the flame front [11]. [Pg.180]

In model equations, Uf denotes the linear velocity in the positive direction of z, z is the distance in flow direction with total length zr, C is concentration of fuel, s represents the void volume per unit volume of canister, and t is time. In addition to that, A, is the overall mass transfer coefficient, a, denotes the interfacial area for mass transfer ifom the fluid to the solid phase, ah denotes the interfacial area for heat transfer, p is density of each phase, Cp is heat capacity for a unit mass, hs is heat transfer coefficient, T is temperature, P is pressure, and AHi represents heat of adsorption. The subscript d refers bulk phase, s is solid phase of adsorbent, i is the component index. The superscript represents the equilibrium concentration. [Pg.702]

A typical simulation result is shown in Fig. 3. Under the given conditions, the concentration of fuel gas in bulk phase at the exit (Fig. 3a) is zero and the concentration of evaporative fuel gas at solid phase (Fig. 3b) at the exit did not reach the equilibrium concentration of activated carbon during adsorption. These results indicate that the canister of ORVR system is properly designed to adsorb the evaporative fuel gas. The temperature changes in canister (Fig. 3 c) during the operation remains in the acceptable range. The test results for different weather conditions showed that the canister design in this study can fulfill the required performance. [Pg.703]

This is considerably higher than that of an H2-O2 fuel cell (i.e., 83%). However, under normal operating conditions, at a current density j, the electrode potentials deviate from their equilibrium values as a result of large overpotentials, r, at both electrodes (Fig. 5) ... [Pg.71]

For synthetic fuels or energy-storage media to be produced electrochemically, it is necessary that the carbon dioxide reduction be conducted at potentials only slightly (not more than by 0.2 V) more negative than the corresponding equilibrium potential. To do this requires extensive research aiming at refining the catalysts and the conditions for this process. [Pg.294]


See other pages where Fuel equilibrium is mentioned: [Pg.26]    [Pg.26]    [Pg.471]    [Pg.2315]    [Pg.2410]    [Pg.2411]    [Pg.59]    [Pg.94]    [Pg.133]    [Pg.248]    [Pg.393]    [Pg.122]    [Pg.207]    [Pg.40]    [Pg.1017]    [Pg.84]    [Pg.287]    [Pg.364]    [Pg.150]    [Pg.957]    [Pg.50]    [Pg.72]    [Pg.935]    [Pg.138]    [Pg.365]    [Pg.412]    [Pg.195]    [Pg.6]    [Pg.171]    [Pg.702]    [Pg.817]    [Pg.40]    [Pg.326]    [Pg.371]    [Pg.74]    [Pg.226]    [Pg.365]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



© 2024 chempedia.info