Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radicals inert

Therefore the preparation of such radicals represents a colossal step forward in the study of stable carbon free radicals. These species are called inert free radicals (IFRs) instead of just stable or persistent free radicals. Inert free radicals are thus trivalent-carbon species possessing a general stability considerably higher than that of the overwhelming majority of normal tetravalent carbon compounds and materials. [Pg.362]

TABLE 2.3 Process comparison of EB, free radical/inert, free radical and cationic systems ... [Pg.11]

The free radicals which have only a transient existence, like -CHa, C2H5 or OH, and are therefore usually met with only as intermediates in chemical reactions, can usually be prepared and studied directly only at low pressures of the order of 1 mm, when they may be transported from the place of preparation in a rapidly streaming inert gas without suffering... [Pg.181]

Inhibitors slow or stop polymerization by reacting with the initiator or the growing polymer chain. The free radical formed from an inhibitor must be sufficiently unreactive that it does not function as a chain-transfer agent and begin another growing chain. Benzoquinone is a typical free-radical chain inhibitor. The resonance-stabilized free radical usually dimerizes or disproportionates to produce inert products and end the chain process. [Pg.1010]

The carboxyl group of acids appears to deactivate the hydrogens on the alpha carbon atom toward attack by the free-radical flux in oxidation reactions. Acetic acid, therefore, is particularly inert toward further oxidation (hydrogens are both primary and deactivated) (48). For this reason, it is feasible to produce acetic acid by the oxidation of butane (in the Hquid phase), even under rather severe oxidation conditions under which most other products are further oxidized to a significant extent (22). [Pg.336]

Chemically the Hquid NaK alloy, usually used as a dispersion and on an inert support, provides more reactive surface area than either potassium or sodium metal alone, thus enhancing the reducing reactivity and permitting reactions to proceed atlower (eg, —12°C) temperatures. NaK alloys are suitable for chemical reactions involving unstable intermediates such as carbanions and free radicals. [Pg.519]

Continuous Polymerization. A typical continuous flow diagram for the vinyl acetate polymerisation is shown in Figure 12. The vinyl acetate is fed to the first reactor vessel, in which the mixture is purged with an inert gas such as nitrogen. Alternatively, the feed may be purged before being introduced to the reactor (209). A methanol solution containing the free-radical initiator is combined with the above stream and passed directiy and continuously into the first reactor from which a stream of the polymerisation mixture is continuously withdrawn and passed to subsequent reactors. More initiator can be added to these reactors to further increase the conversion. [Pg.483]

Butadiene reacts readily with oxygen to form polymeric peroxides, which are not very soluble in Hquid butadiene and tend to setde at the bottom of the container because of their higher density. The peroxides are shock sensitive therefore it is imperative to exclude any source of oxygen from butadiene. Addition of antioxidants like /-butylcatechol (TBC) or butylated hydroxy toluene (BHT) removes free radicals that can cause rapid exothermic polymerizations. Butadiene shipments now routinely contain about 100 ppm TBC. Before use, the inhibitor can easily be removed (247,248). Inert gas, such as nitrogen, can also be used to blanket contained butadiene (249). [Pg.348]

The mutual polymerisation of two or more monomers is called copolymerisation. This topic has been comprehensively reviewed (4,5). Monomers frequentiy show a different reactivity toward copolymerisation than toward homopolymerisation. In fact, some monomers that can be bomopolymerised only with great difficulty, can be readily copolymerised. One such monomer is maleic anhydride. It is rather inert to free-radical homopolymerisation yet can be copolymerised convenientiy with styrene and many other monomers under free-radical conditions. [Pg.177]

Trimetbyl vinyl silane [754-05-2] M 100.2, b 54.4 /744mm, 55.5 /767mm, d S(25,4) 0.6865, n D 1.3880. If the H NMR spectrum shows impurities then dissolve in Et20, wash with aq NH4CI soln, dry over CaCl2, filter, evaporate and distil at atmospheric pressure in an inert atmosphere. It is used as a copolymer and may polymerise in the presence of free radicals. It is soluble in CH2CI2. [J Org Chem 17 1379 7952.]... [Pg.492]

Free-radical polymerisation techniques involving peroxides or azodi-isobutyronitrile at temperatures up to about 100°C are employed commercially. The presence of oxygen in the system will affect the rate of reaction and the nature of the products, owing to the formation of methacrylate peroxides in a side reaction. It is therefore common practice to polymerise in the absence of oxygen, either by bulk polymerisation in a full cell or chamber or by blanketing the monomer with an inert gas. [Pg.402]

A few free radicals are indefinitely stable. Entries 1, 4, and 6 in Scheme 12.1 are examples. These molecules are just as stable under ordinary conditions of temperature and atmosphere as typical closed-shell molecules. Entry 2 is somewhat less stable to oxygen, although it can exist indefinitely in the absence of oxygen. The structures shown in entries 1, 2, and 4 all permit extensive delocalization of the unpaired electron into aromatic rings. These highly delocalized radicals show no tendency toward dimerization or disproportionation. Radicals that have long lifetimes and are resistant to dimerization or other routes for bimolecular self-annihilation are called stable free radicals. The term inert free radical has been suggested for species such as entry 4, which is unreactive under ordinary conditions and is thermally stable even at 300°C. ... [Pg.665]

It is intermediate in reactivity between SF4 and the very inert SFg. Unlike SF4 it is not hydrolysed by water or even by dilute acids or alkalis and, unlike SFg, it is extremely toxic. It disproportion-ates readily at 150° probably by a free radical mechanism involving SF5 (note the long, weak S-S bond Fig. 15.20) ... [Pg.687]

SET from DMSO carbanion to inert free radicals.1057... [Pg.1047]

The chlorine-containing product species (HCl, CIONO2, HOCl) are "inert reservoirs" because they are not directly involved in ozone depletion however, they eventually break down by absorbing solar radiation or by reaction with other free radicals, returning chlorine to its catalytically active form. Ozone is formed fastest in the upper stratosphere at tropical latitudes (by reactions 1 and 2), and in those regions a few percent of the chlorine is in its active "free radical" form the rest is in the "inert reservoir" form (see Figure 3). [Pg.27]

The oxides are gaseous and do not undergo reactions in the atmosphere that produce aerosol particles. Carbon monoxide is a relatively inert material with its main sinks in the atmosphere via reactions with free radicals, e.g.,... [Pg.148]

N2, and bromine trifluoride at 25-35°C " are also highly regioselective for tertiary positions. These reactions probably have electrophilic, not free-radical mechanisms. In fact, the success of the F2 reactions depends on the suppression of free-radical pathways, by dilution with an inert gas, by working at low temperatures, and/or by the use of radical scavengers. [Pg.908]

While by common perception, mineral dusts may appear as particularly inert materials, inorganic particles can participate in a variety of chemical and cellular reactions, some of which are mediated by free radicals. [Pg.248]

Consequently conventional antioxidant mechanisms must be expected to protect against photo-oxidation. Thus hydroperoxide decomposition to inert molecular products will reduce the rate of photoinitiation and scavenging of any of the free radical species will be beneficial, although the effectiveness of conventional antioxidants in photo-oxidations is limited by their own stability and the photo-sensitizing propensity of their products (3,). [Pg.52]

We have also investigated the kinetics of free radical initiation using azobisisobutyronitrile (AIBN) as the initiator [24]. Using high pressure ultraviolet spectroscopy, it was shown that AIBN decomposes slower in C02 than in a traditional hydrocarbon liquid solvent such as benzene, but with much greater efficiency due to the decreased solvent cage effect in the low viscosity supercritical medium. The conclusion of this work was that C02 is inert to free radicals and therefore represents an excellent solvent for conducting free radical polymerizations. [Pg.112]


See other pages where Free radicals inert is mentioned: [Pg.248]    [Pg.262]    [Pg.379]    [Pg.226]    [Pg.355]    [Pg.185]    [Pg.261]    [Pg.481]    [Pg.148]    [Pg.2339]    [Pg.208]    [Pg.131]    [Pg.175]    [Pg.105]    [Pg.229]    [Pg.26]    [Pg.795]    [Pg.167]    [Pg.141]    [Pg.673]    [Pg.116]    [Pg.106]    [Pg.5]    [Pg.774]    [Pg.469]    [Pg.87]    [Pg.122]   
See also in sourсe #XX -- [ Pg.664 , Pg.665 ]

See also in sourсe #XX -- [ Pg.653 , Pg.654 ]

See also in sourсe #XX -- [ Pg.664 , Pg.665 ]




SEARCH



© 2024 chempedia.info