Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform level

Here, I(co) is the Fourier transform of the above C(t) and AEq f is the adiabatic electronic energy difference (i.e., the energy difference between the v = 0 level in the final electronic state and the v = 0 level in the initial electronic state) for the electronic transition of interest. The above C(t) clearly contains Franck-Condon factors as well as time dependence exp(icOfvjvt + iAEi ft/h) that produces 5-function spikes at each electronic-vibrational transition frequency and rotational time dependence contained in the time correlation function quantity <5ir Eg ii,f(Re) Eg ii,f(Re,t)... [Pg.426]

Most hydrocarbon resins are composed of a mixture of monomers and are rather difficult to hiUy characterize on a molecular level. The characteristics of resins are typically defined by physical properties such as softening point, color, molecular weight, melt viscosity, and solubiHty parameter. These properties predict performance characteristics and are essential in designing resins for specific appHcations. Actual characterization techniques used to define the broad molecular properties of hydrocarbon resins are Fourier transform infrared spectroscopy (ftir), nuclear magnetic resonance spectroscopy (nmr), and differential scanning calorimetry (dsc). [Pg.350]

Fourier transform infrared (FTIR) analyzers can be used for industrial applications and m situ measurements in addition to conventional laboratory use. Industrial instruments are transportable, rugged and relatively simple to calibrate and operate. They are capable of analyzing many gas components and determining their concentrations, practically continuously. FTIR analyzers are based on the spectra characterization of infrared light absorbed by transitions in vibrational and rotational energy levels of heteroatomic molecules. [Pg.1303]

Dc correction is a process by which the contribution of the receiver dc is omitted from the FID. The dc level is generally determined by examining the last (one-fourth) portion of the FID (tail), which is more likely to have the maximum dc contribution of the receiver. The level is then subtracted automatically from each FID of the data set before Fourier transformation. [Pg.179]

Conventional use has been made of the radioisotope C, and details need hardly be given here. Illustrative examples include the elucidation of pathways for the anaerobic degradation of amino acids (Chapter 7, Part 1) and purines (Chapter 10, Part 1). Some applications have used C with high-resolution Fourier transform NMR in whole-cell suspensions, and this is equally applicable to molecules containing the natural or the synthetic P nuclei. As noted later, major advances in NMR have made it possible to use natural levels of C. [Pg.277]

At present, most workers hold a more realistic view of the promises and difficulties of work in electrocatalysis. Starting in the 1980s, new lines of research into the state of catalyst surfaces and into the adsorption of reactants and foreign species on these surfaces have been developed. Techniques have been developed that can be used for studies at the atomic and molecular level. These techniques include the tunneling microscope, versions of Fourier transform infrared spectroscopy and of photoelectron spectroscopy, differential electrochemical mass spectroscopy, and others. The broad application of these techniques has considerably improved our understanding of the mechanism of catalytic effects in electrochemical reactions. [Pg.553]

There are many specific ways to generate equally spaced tags but they are all based on the same principle of manipulating the rf pulses to generate equally spaced bands of rf radiation in the frequency domain. It is well known that under ordinary conditions, meaning normal levels of nuclear spin excitation, the frequency spectrum of the rf excitation pulse(s) is approximately the Fourier transform of the pulses in the time domain. Thus, a single slice can be generated in the... [Pg.496]

Most modem IR facilities will use a Fourier Transform IR Spectrometer (FTIR), rather than a dispersive instrument. The essential feature is that all of the light from the source falls on to the detector at any instant, which thus leads to increased signal levels, thereby automatically improving the signal-to-noise ratio at all points on the spectrum. [Pg.44]

This is not a fundamental mathematics bookt nor is it intended to serve a textbook for a specific course, but rather as a reference for students in chemistry and physics at all university levels. Although it is not computer-based, I have made many references to current applications - in particular to try to convince students that they should know more about what goes on behind the screen when they do one of their computer experiments. As an example, most students in the sciences now use a program for the fast Fourier transform. How many of them have any knowledge of the basic mathematics involved ... [Pg.6]

The objective of this study is to characterize tin-containing polymers on a molecular level by means of high field, high resolution, multinuclear Fourier Transform Nuclear Magnetic Resonance (FT-NMR) (4 ). This study is generally an applied approach dealing with composition and configuration of specific formulations of the copolymer. [Pg.484]

Several modem analytical instruments are powerful tools for the characterisation of end groups. Molecular spectroscopic techniques are commonly employed for this purpose. Nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and mass spectrometry (MS), often in combination, can be used to elucidate the end group structures for many polymer systems more traditional chemical methods, such as titration, are still in wide use, but employed more for specific applications, for example, determining acid end group levels. Nowadays, NMR spectroscopy is usually the first technique employed, providing the polymer system is soluble in organic solvents, as quantification of the levels of... [Pg.172]

After activation under vacuum, the cell was cooled by liquid nitrogen so that the sample reached the temperature of 100 K, and carbon monoxide (CO) was introduced progressively (7.5 pmol.g"1 at a time) into the cell. Spectra are recorded at room temperature on a Nicolet Magna 750 spectrometer, at an optical resolution of 4 cm 1, with one level zero filling in the Fourier transform (0.5 cm 1 data spacing) and normalized to 10 mg wafers. [Pg.60]


See other pages where Fourier transform level is mentioned: [Pg.591]    [Pg.444]    [Pg.356]    [Pg.78]    [Pg.196]    [Pg.402]    [Pg.148]    [Pg.289]    [Pg.69]    [Pg.176]    [Pg.179]    [Pg.405]    [Pg.9]    [Pg.76]    [Pg.117]    [Pg.405]    [Pg.436]    [Pg.91]    [Pg.619]    [Pg.17]    [Pg.37]    [Pg.371]    [Pg.423]    [Pg.69]    [Pg.286]    [Pg.699]    [Pg.274]    [Pg.288]    [Pg.8]    [Pg.207]    [Pg.24]    [Pg.156]    [Pg.285]    [Pg.229]    [Pg.83]    [Pg.198]   
See also in sourсe #XX -- [ Pg.413 ]

See also in sourсe #XX -- [ Pg.413 ]

See also in sourсe #XX -- [ Pg.413 ]




SEARCH



Rotational levels Fourier transform microwave

© 2024 chempedia.info