Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

FORMATION OF CARBANIONS FROM HYDROCARBONS

In another study, Streitwieser and Van Sickle (1962) measured the secondary /3-deuterium KIEs for the formation of carbanions from hydrocarbons with lithium cyclohexylamide in cyclohexylamine at 49.9°C. The rate constants needed for determining these KIEs for the formation of the carbanion (reaction (34)) were obtained by analysing the deuterium in the ethylbenzene recovered from the reaction at various times by mass spectrometry. [Pg.204]

Carbanions from hydrocarbons, nitriles, ketones, esters, TV./V-dialkyl acetamides and thioamides, and mono and dianions from (3-dicarbonyl compounds are some of the most common nucleophiles through which a new C-C bond can be formed. This C-C bond formation is also achieved by reaction with aromatic alkoxides. Among the nitrogen nucleophiles known to react are amide ions to form anilines however, the anions from aromatic amines, pyrroles, diazoles and triazoles, react with aromatic substrates to afford C-arylation. [Pg.499]

It has been found that there is often a correlation between the rate of deprotonation (kinetic acidity) and the thermodynamic stability of the carbanion (thermodynamic acidity). Because of this relationship, kinetic measurements can be used to construct orders of hydrocarbon acidities. These kinetic measurements have the advantage of not requiring the presence of a measurable concentration of the carbanion at any time instead, the relative ease of carbanion formation is judged from the rate at which exchange occurs. This method is therefore applicable to very weak acids, for which no suitable base will generate a measurable carbanion concentration. [Pg.407]

Organometallic compounds or carbanions undergo a number of reactions in which the carbanion or carbanion-like moiety of the organometallic compound acts as a nucleophilic displacing agent. Examples are the formation of hydrocarbons from alkyl halides, alkyl halides from halogens, and ketones from acid chlorides or esters. The latter two reactions are closely related to the base-catalyzed condensations and are perhaps additions as well as displacement reactions. Related addition reactions are the carbonation of organometallic compounds and the addition to ketones or aldehydes. [Pg.207]

Since the basic or carbanion intermediate can continue to go to product by Steps 2 and 3, we have a chain reaction which is consistent with the rapid isomerizations which may be obtained using these catalysts. This mechanistic interpretation was proposed in one of the first papers published on this subject (5) it and similar interpretations have been very helpful in bringing about an understanding of base-catalyzed reactions. The chain-reaction sequence may be terminated by reaction with a formation of a material which is not basic enough to metallate the olefin. Such compounds may be polyunsaturated hydrocarbons which may be formed by elimination of hydride ions from a carbanion. [Pg.119]

The above reactions proceed via free radical coupling. An alternative system for photochemically driven hydrocarbon functionalization evidently proceeds via the carbanion, which is obtained from reduction of the initially formed free radical3. The carbanion reacts with acetonitrile to give, after in situ hydrolysis, the methyl ketone, e.g., formation of (tricyclo[3.3.1.13-7]dec-1-yl)ethanone6. [Pg.1128]

By far one of the most important reactions through the S l mechanism is formation of a C—C bond by the reaction of aryl halides with carbanions derived from hydrocarbons, ketones, esters, amides, nitriles and even, with some limitations, from aldehydes. The reactions of cyanide ions and carbonyl complexes of Co and Fe also form a new C—C bond. [Pg.1428]

From a theoretical point of view, the key issue has been the basic nature of the metalation step, where the R groups moves from a R -H bond to a M-R bond. C-H activation is very common in organic chemistry as it allows the formation of functionalized hydrocarbons. Different mechanisms had been proposed for this metalation step, including electrophilic aromatic substitution, a-bond metathesis, oxidative addition/reductiveelimination and Heck-like insertion. Theoretical studies have facilitated narrowing the mechanistic possibilities to two main options oxidative addition/reductive elimination and proton abstraction by a base. In the oxidative addition/reductive elimination process the metal is inserted in the C-H bond with formal increase in the oxidation state of the metal, and the hydride leaves the metal coordination sphere of the metal afterwards. In the proton abstraction mechanism, the metal does not interact directly with the proton, which is captured by a base, with simultaneous formal creation of a carbanion that binds to the metal center. The mechanism of the reaction will depend on the presence of a base able to abstract the proton and of the existence of an energetically accessible oxidation state for the metal. [Pg.199]

Photoinitiation is not the only access to this chemistry, e.g., cathodic induced reduction or the use of alkali metals or other inorganic reducing reagents are also possible, but irradiation often is advantageous for preparative purposes. Since this is a chain process, the use of low-power lamps or a low quantum yield initiation step are not necessarily a limitation. Due to the requirement of a fast cleavage at the radical anion stage, aryl halides are by far the most used reagents, in particular iodides and, to a lower extent, bromides. Nucleophiles are carbanions from sufficiently acidic hydrocarbons, e.g., 1, 3-diphenylindane, fluorene or triphenylmethane [35-37] or, more commonly enolates from ketones [38], esters [39], MA -dialkylamides [40], nitriles [41]. C-C bond formation is obtained also with phenoxide or naphthoxide anions [42,43]. A few representative examples of synthetic applications of the S l... [Pg.139]

The catalytic conditions (aqueous concentrated sodium hydroxide and tetraalkylammonium catalyst) are very useful in generating dihalo-carbenes from the corresponding haloforms. Dichlorocarbene thus generated reacts with alkenes to give high yields of dichlorocyclopropane derivatives,16 even in cases where other methods have failed,17 and with some hydrocarbons to yield dicholromethyl derivatives.18 Similar conditions are suited for the formation and reactions of dibromocar-benc,19 bromofluoro- and chlorofluorocarbene,20 and chlorothiophenoxy carbene,21 as well as the Michael addition of trichloromethyl carbanion to unsaturated nitriles, esters, and sulfones.22... [Pg.93]


See other pages where FORMATION OF CARBANIONS FROM HYDROCARBONS is mentioned: [Pg.22]    [Pg.22]    [Pg.233]    [Pg.22]    [Pg.22]    [Pg.233]    [Pg.118]    [Pg.3]    [Pg.71]    [Pg.242]    [Pg.75]    [Pg.92]    [Pg.219]    [Pg.22]    [Pg.133]    [Pg.337]    [Pg.579]    [Pg.193]    [Pg.89]    [Pg.1067]    [Pg.248]    [Pg.89]    [Pg.381]    [Pg.170]    [Pg.310]    [Pg.130]    [Pg.223]   


SEARCH



Carbanion formation

Carbanions formation

Formation of hydrocarbons

From hydrocarbons

© 2024 chempedia.info