Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Force field solution

Kramers solution of the barrier crossing problem [45] is discussed at length in chapter A3.8 dealing with condensed-phase reaction dynamics. As the starting point to derive its simplest version one may use the Langevin equation, a stochastic differential equation for the time evolution of a slow variable, the reaction coordinate r, subject to a rapidly statistically fluctuating force F caused by microscopic solute-solvent interactions under the influence of an external force field generated by the PES F for the reaction... [Pg.848]

However, in many applications the essential space cannot be reduced to only one degree of freedom, and the statistics of the force fluctuation or of the spatial distribution may appear to be too poor to allow for an accurate determination of a multidimensional potential of mean force. An example is the potential of mean force between two ions in aqueous solution the momentaneous forces are two orders of magnitude larger than their average which means that an error of 1% in the average requires a simulation length of 10 times the correlation time of the fluctuating force. This is in practice prohibitive. The errors do not result from incorrect force fields, but they are of a statistical nature even an exact force field would not suffice. [Pg.22]

Conformational Adjustments The conformations of protein and ligand in the free state may differ from those in the complex. The conformation in the complex may be different from the most stable conformation in solution, and/or a broader range of conformations may be sampled in solution than in the complex. In the former case, the required adjustment raises the energy, in the latter it lowers the entropy in either case this effect favors the dissociated state (although exceptional instances in which the flexibility increases as a result of complex formation seem possible). With current models based on two-body potentials (but not with force fields based on polarizable atoms, currently under development), separate intra-molecular energies of protein and ligand in the complex are, in fact, definable. However, it is impossible to assign separate entropies to the two parts of the complex. [Pg.133]

A. rather complex procedure is used to determine the Born radii a values of which. calculated for each atom in the molecule that carries a charge or a partial charge. T Born radius of an afom (more correctly considered to be an effective Born radii corresponds to the radius that would return the electrostatic energy of the system accordi to the Bom equation if all other atoms in the molecule were uncharged (i.e. if the other ato only acted to define the dielectric boundary between the solute and the solvent). In Sti force field implementation, atomic radii from the OPLS force field are assigned to ec... [Pg.615]

Dne approach to the simulation of chemical reactions in solution is to use a combination t)f [uantum mechanics and molecular mechanics. The reacting parts of the system are treated [uantum mechanically, with the remainder being modelled using the force field. The total mergy Etot for the system can be written ... [Pg.630]

The study of the infrared spectrum of thiazole under various physical states (solid, liquid, vapor, in solution) by Sbrana et al. (202) and a similar study, extended to isotopically labeled molecules, by Davidovics et al. (203, 204), gave the symmetry properties of the main vibrations of the thiazole molecule. More recently, the calculation of the normal modes of vibration of the molecule defined a force field for it and confirmed quantitatively the preceeding assignments (205, 206). [Pg.53]

Force field calculations often truncate the non bonded potential energy of a molecular system at some finite distance. Truncation (nonbonded cutoff) saves computing resources. Also, periodic boxes and boundary conditions require it. However, this approximation is too crude for some calculations. For example, a molecular dynamic simulation with an abruptly truncated potential produces anomalous and nonphysical behavior. One symptom is that the solute (for example, a protein) cools and the solvent (water) heats rapidly. The temperatures of system components then slowly converge until the system appears to be in equilibrium, but it is not. [Pg.29]

The only problem with the foregoing approach to molecular interactions is that the accurate solution of Schrddinger s equation is possible only for very small systems, due to the limitations in current algorithms and computer power. Eor systems of biological interest, molecular interactions must be approximated by the use of empirical force fields made up of parametrized tenns, most of which bear no recognizable relation to Coulomb s law. Nonetheless the force fields in use today all include tenns describing electrostatic interactions. This is due at least in part to the following facts. [Pg.95]

Studies of chemical reactions in solution and in enzymes present an enormous challenge because of the enormous size and complexity of these systems. MM force fields have made a tremendous impact in certain areas, but they cannot... [Pg.260]


See other pages where Force field solution is mentioned: [Pg.2344]    [Pg.24]    [Pg.70]    [Pg.177]    [Pg.418]    [Pg.353]    [Pg.353]    [Pg.29]    [Pg.55]    [Pg.253]    [Pg.589]    [Pg.591]    [Pg.614]    [Pg.161]    [Pg.207]    [Pg.12]    [Pg.55]    [Pg.163]    [Pg.164]    [Pg.397]    [Pg.290]    [Pg.445]    [Pg.14]    [Pg.15]    [Pg.17]    [Pg.22]    [Pg.28]    [Pg.138]    [Pg.141]    [Pg.145]    [Pg.174]    [Pg.176]    [Pg.222]    [Pg.253]    [Pg.443]    [Pg.443]    [Pg.450]    [Pg.451]    [Pg.451]    [Pg.354]    [Pg.378]    [Pg.37]   
See also in sourсe #XX -- [ Pg.310 ]




SEARCH



Solute force

© 2024 chempedia.info