Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorescence theory property

The validity of the above conclusions rests on the reliability of theoretical predictions on excited state barriers as low as 1-2 kcal mol . Of course, this required as accurate an experimental check as possible with reference to both the solvent viscosity effects, completely disregarded by theory, and the dielectric solvent effects. As for the photoisomerization dynamics, the needed information was derived from measurements of fluorescence lifetimes (x) and quantum yields (dielectric constant, where extensive formation of ion pairs may occur [60], the observed photophysical properties are confidently referable to the unperturbed BMPC cation. Figure 6 shows the temperature dependence of the... [Pg.391]

The treatment of the fluorescence data can be represented theoretically by the way the probe was constructed. The number of parameters in the equations is dependent on and directly proportional to the number of components affecting the fluorescence signal. The theory described here is intended for a simple probe where the number of parameters involved in the equation have been kept to a minimum (i.e., the interaction of the NIR dye with the metal ions). In addition, it is assumed that no other components in the probe influence the properties of dye or metal. [Pg.208]

The theory of resonance transfer of electronic excitation energy between donor and acceptor molecules of suitable spectroscopic properties was first presented by Forster.(7) According to this theory, the rate constant for singlet energy transfer from an excited donor to a chromophore acceptor which may or may not be fluorescent is proportional to r 6, where r is the distance... [Pg.281]

The polarization properties of the evanescent wave(93) can be used to excite selected orientations of fluorophores, for example, fluorescent-labeled phosphatidylethanolamine embedded in lecithin monolayers on hydrophobic glass. When interpreted according to an approximate theory, the total fluorescence gathered by a high-aperture objective for different evanescent polarizations gives a measure of the probe s orientational order. The polarization properties of the emission field itself, expressed in a properly normalized theory,(94) can also be used to determine features of the orientational distribution of fluorophores near a surface. [Pg.324]

The goal of theory and computer simulation is to predict S i) and relate it to solvent and solute properties. In order to accomplish this, it is necessary to determine how the presence of the solvent affects the So —> Si electronic transition energy. The usual assmnption is that the chromophore undergoes a Franck-Condon transition, i.e., that the transition occurs essentially instantaneously on the time scale of nuclear motions. The time-evolution of the fluorescence Stokes shift is then due the solvent effects on the vertical energy gap between the So and Si solute states. In most models for SD, the time-evolution of the solute electronic stracture in response to the changes in solvent environment is not taken into accoimt and one focuses on the portion AE of the energy gap due to nuclear coordinates. [Pg.210]

In Strickler and Berg theory, it is assiuned that fluorescence occurs from the original excited state without taking into account possible solvent reorientation and subsequent formation of a new lower energy excited state. Hence, the relationships between absorption and emission spectra may be more complicated than simply following Strickler and Berg theory, and ti may differ from These results indicate the importance of considering the effect of medium on fluorescence properties for these compounds. [Pg.113]

Study of the behaviour and properties of colloidal and particulate matter - Improvement of the measurement techniques currently available, particularly in the submicrometre range, as well as development of the theory necessary to describe the interactions between small colloids and organic matrices is needed. New techniques such as AFM or fluorescence correlation spectroscopy may give information on the conformation characteristics of such molecules as well as their adsorption and aggregation properties. [Pg.217]

The fluorescence properties of free 2AP are simple. AJablonski diagram of 2AP (Fig. 13.IB) computed with time-dependent density functional theory (TDDFT) finds a dominant singlet excited state transition from S() to at 292 nm (Jean and Hall, 2001). In solution, the free nucleobase has a fluorescence excitation maximum of 305 nm and an emission maximum of 360 nm at pH 7. Its quantum yield is not high 0.68 at pH 7.0 in 100 mM NaCl, 25 °C. Its fluorescence lifetime in aqueous solution is 10 ns at 22 °C and is described by a single exponential decay. [Pg.270]

In this section, I will discuss some of the more recent developments in continuum solvation dynamics in polar solvents. Some of these deal with incorporation of realistic models for chromophores [8,43 16] used in fluorescence-upconversion experiments, others with improvements in modeling of the solution dielectric properties [47,48], including incorporation solvent dielectric response over a wide frequency range [43,44, 46,48] into theories of SD. [Pg.371]

Another type of intrinsic property is derived from the theory of light scattering in particles. The phenomenon of Raman and fluorescent scattering from molecules suspended in small dielectric particles exemplifies such prop-... [Pg.57]

Response theory describes the S-T transition probabilities in unsaturated hydrocarbons quite well more than 99 % of the So - Xi transition intensity is out-of-plane polarized in agreement with experiment for aromatics in ethylene, butadiene and naphthalene the y spin-sublevel of the T state is the most active one, where y is the long in-plane axis of the molecules [134,132]. The main difference between the triplet states of aromatic and aliphatic compounds is the lack of phosphorescence for the latter. We have related this to the fact that polyenes also lack fluorescence (or have very weak fluorescence). This have been explained from the effective quenching of singlet excited (tr r ) states, which is an inherent property for the short polyenes. Our results suggest that this situation also prevails for the lowest triplet states. [Pg.142]

Thus the waiting time distribution v /(t), of Eq. (280), is proportional to the second time derivative of Eq. (282), this being a known consequence of renewal theory [63], as the reader can easily establish by means of Eq. (147). Hence, for p > 2, modulation and renewal yield not only the same v /(x), but also the same correlation function. In the next subsection, however, we shall see that modulation does not yield the renewal aging of Section XI, which was found by the authors of Ref. 98 to be a genuine property of BQD intermittent fluorescence. [Pg.454]


See other pages where Fluorescence theory property is mentioned: [Pg.481]    [Pg.240]    [Pg.196]    [Pg.6]    [Pg.147]    [Pg.485]    [Pg.485]    [Pg.444]    [Pg.87]    [Pg.259]    [Pg.261]    [Pg.134]    [Pg.234]    [Pg.119]    [Pg.17]    [Pg.346]    [Pg.231]    [Pg.127]    [Pg.194]    [Pg.190]    [Pg.4]    [Pg.220]    [Pg.307]    [Pg.21]    [Pg.133]    [Pg.86]    [Pg.47]    [Pg.356]    [Pg.297]    [Pg.197]    [Pg.8]    [Pg.127]    [Pg.193]   
See also in sourсe #XX -- [ Pg.56 ]




SEARCH



Fluorescence theory

© 2024 chempedia.info