Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluid microstructure, characterization functions

Fluid microstructure may be characterized in terms of molecular distribution functions. The local number of molecules of type a at a distance between r and r-l-dr from a molecule of type P is Pa T 9afi(r)dr where Pa/j(r) is the spatial pair correlation function. In principle, flr (r) may be determined experimentally by scattering experiments however, results to date are limited to either pure fluids of small molecules or binary mixtures of monatomic species, and no mixture studies have been conducted near a CP. The molecular distribution functions may also be obtained, for molecules interacting by idealized potentials, from molecular simulations and from integral equation theories. [Pg.28]

Improved characterization of the morphological/microstructural properties of porous solids, and the associated transport properties of fluids imbibed into these materials, is crucial to the development of new porous materials, such as ceramics. Of particular interest is the fabrication of so-called functionalized ceramics, which contain a pore structure tailored to a specific biomedical or industrial application (e.g., molecular filters, catalysts, gas storage cells, drug delivery devices, tissue scaffolds) [1-3]. Functionalization of ceramics can involve the use of graded or layered pore microstructure, morphology or chemical composition. [Pg.304]

Fabrication processing of these materials is highly complex, particularly for materials created to have interfaces in morphology or a microstructure [4—5], for example in co-fired multi-layer ceramics. In addition, there is both a scientific and a practical interest in studying the influence of a particular pore microstructure on the motional behavior of fluids imbibed into these materials [6-9]. This is due to the fact that the actual use of functionalized ceramics in industrial and biomedical applications often involves the movement of one or more fluids through the material. Research in this area is therefore bi-directional one must characterize both how the spatial microstructure (e.g., pore size, surface chemistry, surface area, connectivity) of the material evolves during processing, and how this microstructure affects the motional properties (e.g., molecular diffusion, adsorption coefficients, thermodynamic constants) of fluids contained within it. [Pg.304]

Third, a serious need exists for a data base containing transport properties of complex fluids, analogous to thermodynamic data for nonideal molecular systems. Most measurements of viscosities, pressure drops, etc. have little value beyond the specific conditions of the experiment because of inadequate characterization at the microscopic level. In fact, for many polydisperse or multicomponent systems sufficient characterization is not presently possible. Hence, the effort probably should begin with model materials, akin to the measurement of viscometric functions [27] and diffusion coefficients [28] for polymers of precisely tailored molecular structure. Then correlations between the transport and thermodynamic properties and key microstructural parameters, e.g., size, shape, concentration, and characteristics of interactions, could be developed through enlightened dimensional analysis or asymptotic solutions. These data would facilitate systematic... [Pg.84]


See other pages where Fluid microstructure, characterization functions is mentioned: [Pg.74]    [Pg.265]    [Pg.7]    [Pg.543]    [Pg.2841]   
See also in sourсe #XX -- [ Pg.28 , Pg.29 , Pg.30 , Pg.31 , Pg.32 , Pg.33 , Pg.34 , Pg.35 ]




SEARCH



Fluid microstructure, characterization

Fluids microstructured

Microstructural characterization

© 2024 chempedia.info