Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluid Hatta number

For analysis of such coupled fluid-fluid systems it is useful to distinguish between three regimes of the reaction rate (see Figure 1) which are characterized by different values of the Hatta number Ha (eqs. (2) and (3)) and the enhancement factor E (see below) ... [Pg.752]

Fluid-fluid reactions are reactions that occur between two reactants where each of them is in a different phase. The two phases can be either gas and liquid or two immiscible liquids. In either case, one reactant is transferred to the interface between the phases and absorbed in the other phase, where the chemical reaction takes place. The reaction and the transport of the reactant are usually described by the two-film model, shown schematically in Figure 1.6. Consider reactant A is in phase I, reactant B is in phase II, and the reaction occurs in phase II. The overall rate of the reaction depends on the following factors (i) the rate at which reactant A is transferred to the interface, (ii) the solubihty of reactant A in phase II, (iii) the diffusion rate of the reactant A in phase II, (iv) the reaction rate, and (v) the diffusion rate of reactant B in phase II. Different situations may develop, depending on the relative magnitude of these factors, and on the form of the rate expression of the chemical reaction. To discern the effect of reactant transport and the reaction rate, a reaction modulus is usually used. Commonly, the transport flux of reactant A in phase II is described in two ways (i) by a diffusion equation (Pick s law) and/or (ii) a mass-transfer coefficient (transport through a film resistance) [7,9]. The dimensionless modulus is called the Hatta number (sometimes it is also referred to as the Damkohler number), and it is defined by... [Pg.13]

Depending on the value of Ha, different situations can be distinguished (see Figure 2.12) For Ha < 0.3 the reaction rate is slow compared to the mass transfer and the reaction takes place in the bulk phase. For values of the Hatta number // > 3, the reaction rate is very fast compared to the mass transfer rate and the reaction takes place only in the fluid film of the reaction phase near the interfacial area. Under these conditions, the transformation increases proportionally with the specific interfacial area between the phases (a) and the square root of the reaction rate constant (Equation 2.93) ... [Pg.316]

Film Theory and Gas-Liquid and Liquid-Liquid Mass Transfer. The history and literature surrounding interfacial mass transfer is enormous. In the present context, it suffices to say that the film model, which postulates the existence of a thin fluid layer in each fluid phase at the interface, is generally accepted (60). In the context of coupled mass transfer and reaction, two common treatments involve 1) the Hatta number and (2) enhancement factors. Both descriptions normally require a detailed model of the kinetics as well as the mass transfer. The Hatta number is perhaps more intuitive, since the numbers span the limiting cases of infinitely slow reaction with respect to mass transfer to infinitely fast reaction with respect to mass transfer. In the former case all reaction occurs in the bulk phase, and in the latter reaction occurs exclusively at the interface with no bulk reaction occurring. Enhancement factors are usually categorized in terms of reaction order (61). In the context of nonreactive systems, a characteristic time scale (eg, half-life) for attaining vapor-liquid equilibrium and liquid-liquid equilibrium, 6>eq, in typical laboratory settings is of the order of minutes. [Pg.2120]

Use Hatta number to determine the controlling regime in a fluid-fluid reaction system. [Pg.347]


See other pages where Fluid Hatta number is mentioned: [Pg.397]    [Pg.14]    [Pg.73]    [Pg.146]   
See also in sourсe #XX -- [ Pg.316 ]




SEARCH



Hatta number

© 2024 chempedia.info