Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flavor compounds, bread crusts

The composition of the volatile fraction of bread depends on the bread ingredients, the conditions of dough fermentation and the baking process. This fraction contributes significantly to the desirable flavors of the crust and the crumb. For this reason, the volatile fraction of different bread types has been studied by several authors. Within the more than 280 compounds that have been identified in the volatile fraction of wheat bread, only a relative small number are responsible for the different notes in the aroma profiles of the crust and the crumb. These compounds can be considered as character impact compounds. Approaches to find out the relevant aroma compounds in bread flavors using model systems and the odor unit concept are emphasized in this review. A new technique denominated "aroma extract dilution analysis" was developed based on the odor unit concept and GC-effluent sniffing. It allows the assessment of the relative importance of the aroma compounds of an extract. The application of this technique to extracts of the crust of both wheat and rye breads and to the crumb of wheat bread is discussed. [Pg.258]

The low odor threshold (0.1 pg/kg water) of this compound and its odor description as "popcorn-like" (27) agrees with its strong crusty character. Furthermore, the statement of Buttery et al. (27) that "2-acetyl-l-pyrroline seems to be the most potent of the cracker-like group of odor compounds" (which includes 3, 5 and 7 in Figure 1) underlines its importance for the flavor of the white bread crust. [Pg.263]

Compounds 3, 5 and 6 shown in Figure 1 were detected in the aroma extracts of the wheat and the rye bread crusts, but on the basis of their relatively low FD-factors we concluded these compounds contribute only to the background flavors of both bread types. Furthermore, there was no indication that the sulfur-containing heterocy-clics 2-[(methyldithioImethylJfuran and 2-acetyl-2-thiazoline (4 and 7 in Figure 1) were of significance to the flavor of the wheat bread crust. [Pg.264]

A comparison of the most important aroma compounds present in the wheat bread crust (3 7) with those identified in the crumb (Table IV) revealed two striking differences 2-acetyl-l-pyrroline and 3-methylbutanal, which appeared as potent flavor compounds respectively responsible for the roasty and malty aroma note in wheat bread crust, showed low FD-factors in the wheat bread crumb and are not listed in Table IV. On the other hand, carbonyl compounds with fatty aroma notes like 2(E),4(E)-decadienal, 2(E)-nonenal and 2(Z)-nonenal predominated in the crumb (Table IV). [Pg.265]

It is generally accepted (1 ) that volatile compounds present in the flour are of minor importance to the aroma of bread. Prerequisites for formation of the desired crust flavor compounds are the dough fermentation and, especially, the baking steps (J2, 3). [Pg.268]

We recently identified 2-acetyl-l-pyrroline (Acp) with a crackerlike odor as the most intense flavor compound of wheat bread crust (4). Tressl et al. (5) reported that small amounts of this compound were formed when model mixtures containing proline and monosaccharides were heated. [Pg.268]

SCHIEBERLE Formation of Flavor Compounds in Wheat Bread Crust... [Pg.269]

The flavor compounds of the crust from the chemically leavened model bread were then compared to those recently identified (6) in the crust of a standard wheat bread which was leavened by addition of yeast (Table I). One striking difference was that Acp (No. 16), which showed the highest FD-factor in the yeast-leavened bread showed a very low FD-factor in the chemically leavened bread. This indicated, that the flour contained only minor amounts of the precursor (s) for the formation of Acp. On the other hand, 2(E),4(E)-decadienal, 2(E),4(E)-nonadienal, l-octen-3-one and 2(Z)-nonenal, which are undoubtedly formed by a heat-induced oxidative degradation of the flour lipids, became predominant odorants in the chemically leavened compared to the yeast-leavened bread. [Pg.269]

Table I. Comparison of the Important Neutral/Basic Volatile Crust Flavor Compounds of a Chemically Leavened Wheat Bread (CL—WB)a With Those of a Yeast-leavened Wheat Bread (YL-WB)b ... Table I. Comparison of the Important Neutral/Basic Volatile Crust Flavor Compounds of a Chemically Leavened Wheat Bread (CL—WB)a With Those of a Yeast-leavened Wheat Bread (YL-WB)b ...
Sulfur Heterocyclics. Sulfur containing compounds (thiols, thiophenes, thiazoles,. .. etc.) play a major role in the flavor of raw and processed foods. These compounds have characteristic flavor notes and the flavor thresholds are mostly low. Several reviews (ill, 112, 113) demonstrate the important role of sulfur compounds in food flavors. Organoleptic properties of these compounds may be pleasant, strong nut-like odor of U-methyl-5-vinylthiazole which is present in cocoa (llU) objectionable pyridine-like odor of thiazole (115) quinoline-like odor of benzothia-zole (ll6) strong tomato leaf-like odor of isobutylthiazole (117) and bread crust flavor of acetyl-2-thiazoline (ll8). A mixture of oxazoles, thiazoles, thiazolines, imidazoles, trithiolanes and... [Pg.238]

Although more than 280 compounds have been identified in the volatile fiction of wheat bread, only a small number is responsible for the flavor notes in the crust and the crumb. Schieberle and Grosch (73) used aroma extract dilution analysis (AEDA) to select 32 odorants in wheat. Among the odorants, 2-acetyl-pyrroline (roasly, bread crust-like) was the most potent aroma, followed by E-2-nonenal (green, tallowy), 3-methylbutanal (malty, nutty), diacetyl (buttery) and Z-2-nonenal (green, fiitty). [Pg.19]

Crust volatiles were isolated immediately after baking by extraction with dichloromethane and sublimation in vacuo ( ). Application of aroma extract dilution analysis 6) to the acid-free crust extract led to the detection of 31 odorants. After separation and enrichment, these compounds were identified by comparison of the MS/EI, MS/Cl and retention data on two columns of different polarity to reference compounds. Aroma quality was also assessed. The results of the identification experiments (Table I) revealed that 2(E)-none-nal (No. 1), followed by 2(E),4(E)-decadienal (No. 2) and 3-methyl-butanal (No. 3) showed the highest FD-factors in the crust of the chemically leavened bread. Additionally l-octen-3-one, 2(Z)-nonenal, 2(E),4(E)-nonadienal and an unknown compound with a metallic odor contributed high FD-factors to the overall flavor (For a discussion of FD-factors, see Chapter by Schieberle and Grosch, this book). [Pg.269]

These nonenzymatic reactions are responsible for numerous changes on food properties and may impair food safety. Although these reactions are of great importance in the production of aroma, taste and color, they are often accompanied by a reduction of the nutritive value of different foods and by the formation of toxic compounds harmful for human health (Ledl and Schleicher, 1990). Results of nonenzymatic browning can be either desirable or undesirable. The brown crust formation on bread is desirable the brown discoloration of evaporated and sterilized milk is undesirable. For products in which the browning reaction is favorable, the resulting color and flavor characteristics are generally experienced as pleasant. In other products, color and flavor may become quite unpleasant. [Pg.27]


See other pages where Flavor compounds, bread crusts is mentioned: [Pg.17]    [Pg.193]    [Pg.6]    [Pg.262]    [Pg.264]    [Pg.469]    [Pg.172]    [Pg.302]    [Pg.58]    [Pg.322]    [Pg.327]    [Pg.389]   
See also in sourсe #XX -- [ Pg.269 , Pg.270 ]




SEARCH



Bread

Bread crust

Bread flavor

Compounding flavoring

Flavor compound in wheat bread crust

Flavor compounding

© 2024 chempedia.info