Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Finite element analysis strain comparison

Fig. 5.2 Comparison of creep behavior and time-dependent change in fiber and matrix stress predicted using a 1-D concentric cylinder model (ROM model) (solid lines) and a 2-D finite element analysis (dashed lines). In both approaches it was assumed that a unidirectional creep specimen was instantaneously loaded parallel to the fibers to a constant creep stress. The analyses, which assumed a creep temperature of 1200°C, were conducted assuming 40 vol.% SCS-6 SiC fibers in a hot-pressed SijN4 matrix. The constituents were assumed to undergo steady-state creep only, with perfect interfacial bonding. For the FEM analysis, Poisson s ratio was 0.17 for the fibers and 0.27 for the matrix, (a) Total composite strain (axial), (b) composite creep rate, and (c) transient redistribution in axial stress in the fibers and matrix (the initial loading transient has been ignored). Although the fibers and matrix were assumed to exhibit only steady-state creep behavior, the transient redistribution in stress gives rise to the transient creep response shown in parts (a) and (b). After Wu et al 1... Fig. 5.2 Comparison of creep behavior and time-dependent change in fiber and matrix stress predicted using a 1-D concentric cylinder model (ROM model) (solid lines) and a 2-D finite element analysis (dashed lines). In both approaches it was assumed that a unidirectional creep specimen was instantaneously loaded parallel to the fibers to a constant creep stress. The analyses, which assumed a creep temperature of 1200°C, were conducted assuming 40 vol.% SCS-6 SiC fibers in a hot-pressed SijN4 matrix. The constituents were assumed to undergo steady-state creep only, with perfect interfacial bonding. For the FEM analysis, Poisson s ratio was 0.17 for the fibers and 0.27 for the matrix, (a) Total composite strain (axial), (b) composite creep rate, and (c) transient redistribution in axial stress in the fibers and matrix (the initial loading transient has been ignored). Although the fibers and matrix were assumed to exhibit only steady-state creep behavior, the transient redistribution in stress gives rise to the transient creep response shown in parts (a) and (b). After Wu et al 1...
Structural mechanical calculations such as finite-element analysis (FEA) are used to analyze both the inflated and loaded deflected shapes of a tire cross-section and the resulting stress-strain relationships in the belt area. Such studies permit both quantitative analysis and qualitative comparisons of the range of belt configuration options. Figure 14.9 shows a heavy-duty truck tire in the loaded and unloaded states. The density of grids is designed so as to preserve... [Pg.663]

Figure 2 (a) Schematic compressive stress-strain curves for PP foam, (b) Schematic description of the numerical foam model, (c) Loading and imloading behavior of the foetm skeleton, (d) Comparison of experimental data and finite-element analysis result. [Pg.501]

To measure load distribution, standard aerospace bolts were fitted with strain gauges. Both shear and axial load could be measured. A three-dimensional finite element model with linear elastic material properties was developed for calculation of load distribution prior to initiation of material failure and comparison with instm-mented bolt results. Model details are similar to those of the single-bolt model above, with a full contact analysis being performed for all bolts, washers and holes. [Pg.313]


See other pages where Finite element analysis strain comparison is mentioned: [Pg.245]    [Pg.630]    [Pg.331]    [Pg.821]    [Pg.476]    [Pg.2225]    [Pg.164]   
See also in sourсe #XX -- [ Pg.232 ]




SEARCH



Comparison analysis

Elemental analysis, comparison

Elemental comparison

Elemental strain

Finite-element

© 2024 chempedia.info