Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fermi statistics INDEX

An additional complication in the PIMC simulations arises when Bose or Fermi statistics is included in the formalism. The trace in the partition function allows for paths which may end at a particle index which is different from the starting index. In this way larger, closed paths may build up which eventually spread over the entire system. All such possible paths corresponding to the exchange of indistinguishable particles have to be taken into account in the partition function. For bosons these contributions are summed up for fermions the number of permutations of particle indices involved decides whether the contribution is added (even) or subtracted (odd) in the partition function. [Pg.94]

The basic building blocks of the theory are Heisenberg operators (x) which create and destroy respectively, particles of type m at the space-time point x = x, (x. For the purposes of chemistry we can take the index nzs>e for electrons and a for nuclei only. Of course when energies are much larger than chemical energies, nuclei appear to be composite particles, and we must then introduce fields for their constituents (quarks, rishons). We shall not make any explicit reference to the spins carried by these fields beyond noting that odd-integral spins require fermi statistics, so that for fermi fields we have canonical anticommutation relations (CARS)... [Pg.7]

The density functional theory of Hohenberg, Kohn and Sham [173,205] has become the standard formalism for first-principles calculations of the electronic structure of extended systems. Kohn and Sham postulate a model state described by a singledeterminant wave function whose electronic density function is identical to the ground-state density of an interacting /V-clcctron system. DFT theory is based on Hohenberg-Kohn theorems, which show that the external potential function v(r) of an //-electron system is determined by its ground-state electron density. The theory can be extended to nonzero temperatures by considering a statistical electron density defined by Fermi-Dirac occupation numbers [241], The theory is also easily extended to the spin-indexed density characteristic of UHF theory and of the two-fluid model of spin-polarized metals [414],... [Pg.68]

The Hohenberg-Kohn theory of /V-clcctron ground states is based on consideration of the spin-indexed density function. Much earlier in the development of quantum mechanics, Thomas-Fermi theory [402, 108] (TFT) was formulated as exactly such a density-dependent formalism, justified as a semiclassical statistical theory [231, 232], Since Hohenberg-Kohn theory establishes the existence of an exact universal functional Fs [p] for ground states, it apparently implies the existence of an exact ground-state Thomas-Fermi theory. The variational theory that might support such a conclusion is considered here. [Pg.72]


See other pages where Fermi statistics INDEX is mentioned: [Pg.480]    [Pg.136]    [Pg.237]   


SEARCH



Fermi statistics (

© 2024 chempedia.info