Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extensibility polymer chain

A polymer chain can be approximated by a set of balls connected by springs. The springs account for the elastic behaviour of the chain and the beads are subject to viscous forces. In the Rouse model [35], the elastic force due to a spring connecting two beads is f= bAr, where Ar is the extension of the spring and the spring constant is ii = rtRis the root-mean-square distance of two successive beads. The viscous force that acts on a bead is... [Pg.2528]

Chain-Growth Associative Thickeners. Preparation of hydrophobically modified, water-soluble polymer in aqueous media by a chain-growth mechanism presents a unique challenge in that the hydrophobically modified monomers are surface active and form micelles (50). Although the initiation and propagation occurs primarily in the aqueous phase, when the propagating radical enters the micelle the hydrophobically modified monomers then polymerize in blocks. In addition, the hydrophobically modified monomer possesses a different reactivity ratio (42) than the unmodified monomer, and the composition of the polymer chain therefore varies considerably with conversion (57). The most extensively studied monomer of this class has been acrylamide, but there have been others such as the modification of PVAlc. Pyridine (58) was one of the first chain-growth polymers to be hydrophobically modified. This modification is a post-polymerization alkylation reaction and produces a random distribution of hydrophobic units. [Pg.320]

Cross-linking of a polymer elevates and extends the mbbery plateau little effect on T is noted until extensive cross-linking has been introduced (23,25,28). A cross-link joins more than two primary polymer chains together. In practice, cross-linking of acryflc polymers is used to decrease thermoplasticity and solubility and increase resilience. In some instances cross-linking moieties are used in reactions of a polymer with a substrate (20). The chemistry of cross-linking is described in references 11 and 29—38. [Pg.163]

Whea there are reactants with three or more functionahties participating ia the polymerization, branching and the formation of iatermolecular linkages, ie, cross-linking of the polymer chains, become definite possibiUties. If extensive cross-linking occurs in a polymer system to form network stmctures, the mobiUty of the polymer chains is greatiy restricted. Then the system loses its fluidity and transforms from a moderately viscous Hquid to a gelled material with infinite viscosity. The experimental results of several such reaction systems are collected in Table 6. [Pg.35]

By introducing branch points into the polymer chains, for example by incorporating about 2% of 1,2,3,-trichloropropane into the polymerisation recipe, chain extension may proceed in more than two directions and this leads to the formation of networks by chemical cross-links. However, with these structures interchange reactions occur at elevated temperatures and these cause stress relief of stressed parts and in turn a high compression set. [Pg.553]

Treatment of polymer surfaces to improve their wetting, water repulsion, and adhesive properties is now a standard procedure. The treatment is designed to change the chemistry of the outermost groups in the polymer chain without affecting bulk polymer properties. Any study of the effects of treatment therefore requires a technique that is specific mostly to the outer atomic layers this is why SSIMS is extensively used in this area. [Pg.100]

A natural extension of the studies in Sec. VIIA would be the investigation of the drift of a polymer chain in random environment when a constant external field B is applied in one direction [21,22]. [Pg.605]

The extensive industrial and commercial utilization of water-soluble polymers (polyelectrolytes) in water treatment has been developed based on the charge along the polymer chains and the resultant water solubility. The use of water-soluble polymers in water treatment has been investigated by several authors [5-26] in the recovery of metals radioactive isotopes, heavy metals, and harmful inorganic residues. This allows recycling water in the industrial processes and so greatly saves... [Pg.119]

Chcmically, Bakelite is a phenolic resin, produced by reaction of phenol and formaldehyde. On heating, water is eliminated, many cross-links form, and the polymer sets into a rocklike mass. The cross-linking in Bakelite and other thermosetting resins is three-dimensional and is so extensive that we can t really speak of polymer "chains." A piece of Bakelite is essentially one large molecule. [Pg.1218]

Another consequence of the absence of sponataneous transfer and termination reactions is that the polymer chains formed remain living 3), i.e. they carry at the chain end a metal-organic site able to give further reactions. Block copolymer synthesis is probably the major application 12 14), but the preparation of co-functional polymers, some chain extension processes, and the grafting onto reactions arise also directly from the long life time of the active sites. [Pg.148]

There are several schemes for the synthesis of cellulose formates (slow) reaction of the polymer with formic acid faster reaction in the presence of a mineral acid catalyst, e.g., sulfuric or phosphoric acid. The latter route is usually associated with extensive degradation of the polymer chain. Reaction of SOCI2 with DMF produces the Vilsmeier-Haack adduct (HC(Cl) = N (CH3)2C1 ) [145]. In the presence of base, cellulose reacts with this adduct to form the unstable intermediate (Cell - O - CH = N" (CH3)2C1 ) from which cellulose formate is obtained by hydrolysis. The DS ranges from 1.2 to 2.5 and the order of reactivity is 5 > C2 > C3 [140-143,146]. [Pg.125]

The value should be that of single polymer chain elasticity caused by entropic contribution. At first glance, the force data fluctuated a great deal. However, this fluctuation was due to the thermal noise imposed on the cantilever. A simple estimation told us that the root-mean-square (RMS) noise in the force signal (AF-lS-b pN) for an extension length from 300 to 350 nm was almost comparable with the thermal noise, AF= -21.6 pN. [Pg.584]


See other pages where Extensibility polymer chain is mentioned: [Pg.539]    [Pg.81]    [Pg.457]    [Pg.2364]    [Pg.239]    [Pg.312]    [Pg.314]    [Pg.317]    [Pg.265]    [Pg.28]    [Pg.220]    [Pg.317]    [Pg.260]    [Pg.466]    [Pg.245]    [Pg.239]    [Pg.324]    [Pg.345]    [Pg.507]    [Pg.238]    [Pg.116]    [Pg.193]    [Pg.564]    [Pg.16]    [Pg.205]    [Pg.77]    [Pg.100]    [Pg.168]    [Pg.142]    [Pg.377]    [Pg.399]    [Pg.111]    [Pg.140]    [Pg.470]    [Pg.48]    [Pg.185]    [Pg.293]    [Pg.582]    [Pg.585]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Chain extensibility

Chain extension

Extension of iSAFT model to grafted polymer chains

Extension polymer

Polymer chain extension

Polymer chain extension

Polymer main-chain extension

© 2024 chempedia.info