Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimental Results on the Swelling of Nonionic Network Systems

Because of the previously mentioned inadequacy of the function a —l/a, a different value for the parameter %i is required for the set of points (Fig. 135) at each elongation a. These values are —0.90, — 0.73, and —0.56 for a = 1.4, 2.0, and 3.0, respectively. If the function a — l/a were replaced by an empirical representation of the shape of the stress-strain curve, a single value of xi would suffice to represent all of the data within experimental error. This limitation of Eq. (41) relates to an unexplained feature of the stress-strain curve and is [Pg.581]

According to these results, swelling measurements on a series of [Pg.582]

Gee ° has applied this method to the determination of the interaction parameters xi for natural rubber in various solvents. Several rubber vulcanizates were used. The effective value of VelV for each was determined by measuring its extension under a fixed load when swollen in petroleum ether. Samples were then swollen to equilibrium in other solvents, and xi was calculated from the swelling ratio in each. The mean values of xi for the several vulcanizates in each solvent are presented in Table XXXVI, where they are compared with the xi s calculated (Eq. XII-30) from vapor pressure measurements on solutions of unvulcanized rubber in some of the same solvents. The agreement is by no means spectacular, though perhaps no worse than the experimental error in the vapor pressure method. [Pg.584]


See other pages where Experimental Results on the Swelling of Nonionic Network Systems is mentioned: [Pg.581]   


SEARCH



Experimental system

Networks, swelling

Nonionizing

Swelling of networks

System Results

Systems networks

The Experimental Results

The results

© 2024 chempedia.info