Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excited state of electron

Fig. 11-2. Effect of the complexation by crown ethers on the ground and first excited states of electron donor-substituted benzenediazonium ions (after Walkow and Israel, 1990). Fig. 11-2. Effect of the complexation by crown ethers on the ground and first excited states of electron donor-substituted benzenediazonium ions (after Walkow and Israel, 1990).
In relation to the reduction potentials and to the energy of the singlet excited state of electron acceptors, we can set, applying Weller s equation, the maximum oxidation potential of electron donors to efficiently quench the fluorescence of each one of the electron acceptors listed above. In other words, with the most commonly used electron acceptor, DC A, its fluorescence will be efficiently quenched only by donors with oxidation potentials lower than 2 V vs SCE (calomel standard electrode). Instead, with 2,6,9,10-tetracyanoanthracene (TCA), which has a singlet energy similar to that of DCA, but is much easier to reduce, its fluorescence will be quenched by donors with oxidation potentials as great as 2.5 V vs SCE. [Pg.126]

The elementary surface excited states of electrons in crystals are called surface excitons. Their existence is due solely to the presence of crystal boundaries. Surface excitons, in this sense, are quite analogous to Rayleigh surface waves in elasticity theory and to Tamm states of electrons in a bounded crystal. Increasing interest in surface excitons is provided by the new methods for the experimental investigation of excited states of the surfaces of metals, semiconductors and dielectrics, of thin films on substrates and other laminated media, and by the extensive potentialities of surface physics in scientific instrument making and technology. [Pg.325]

The first excited state of electronically promoted molecular oxygen behave as an electrophile since it has two paired electrons while second excited state behave like radical. The singlet excited state of oxygen molecule is most stable state. Most of the photooxygenation reactions are shown by the singlet molecular oxygen. ... [Pg.286]

Electron-impact energy-loss spectroscopy (EELS) differs from other electron spectroscopies in that it is possible to observe transitions to states below the first ionization edge electronic transitions to excited states of the neutral, vibrational and even rotational transitions can be observed. This is a consequence of the detected electrons not originating in the sample. Conversely, there is a problem when electron impact induces an ionizing transition. For each such event there are two outgoing electrons. To precisely account for the energy deposited in the target, the two electrons must be measured in coincidence. [Pg.1307]

Ireland J F and Wyatt PAH 1976 Acid-base properties of electronically excited states of organic molecules Adi/. Rhys. Org. Chem. 12 131-221... [Pg.2969]

Calculations of bound vibrational levels have been carried out for the first electronically excited state of H3 with (and without) consideration of the GP effect using the GBO equation [4,5,53], see Appendix A, Eq. (A.14). The... [Pg.605]

To define the state yon want to calculate, you must specify the m u Itiplicity. A system with an even ii n m ber of electron s n sn ally has a closed-shell ground state with a multiplicity of I (a singlet). Asystem with an odd niim her of electrons (free radical) nsnally has a multiplicity of 2 (a doublet). The first excited state of a system with an even ii nm ber of electron s usually has a m n Itiplicity of 3 (a triplet). The states of a given m iiltiplicity have a spectrum of states —the lowest state of the given multiplicity, the next lowest state of the given multiplicity, and so on. [Pg.218]

The triplet excited state of H2 is obtained by promoting an electron to a higher-energy molecular orbital. This higher-energy (antibonding) orbital is written and can be considered to arise from two Is orbitals as follows ... [Pg.65]

This is an introduction to the techniques used for the calculation of electronic excited states of molecules (sometimes called eximers). Specifically, these are methods for obtaining wave functions for the excited states of a molecule from which energies and other molecular properties can be calculated. These calculations are an important tool for the analysis of spectroscopy, reaction mechanisms, and other excited-state phenomena. [Pg.216]

The ground configuration of Ar is KL3s 3p, giving an inverted P /2 multiplet. The excited states involved in laser action involve promotion of an electron from the 3p orbital into excited As,5s,Ap,5p,3d,Ad,... orbitals. Similarly, excited states of Kr involved arise from promotion of an electron from the Ap orbital. In Ar the KL3s 3p configuration gives rise to 5, V, terms (see Section 7.1.2.3). Most laser transitions involve the core in one of the states and the promoted electron in the Ap orbital. [Pg.355]

Photopolymerization. In many cases polymerization is initiated by ittadiation of a sensitizer with ultraviolet or visible light. The excited state of the sensitizer may dissociate directiy to form active free radicals, or it may first undergo a bimoleculat electron-transfer reaction, the products of which initiate polymerization (14). TriphenylaLkylborate salts of polymethines such as (23) ate photoinitiators of free-radical polymerization. The sensitivity of these salts throughout the entire visible spectral region is the result of an intra-ion pair electron-transfer reaction (101). [Pg.496]

Decay Schemes. Eor nuclear cases it is more useful to show energy levels that represent the state of the whole nucleus, rather than energy levels for individual atomic electrons (see Eig. 2). This different approach is necessary because in the atomic case the forces are known precisely, so that the computed wave functions are quite accurate for each particle. Eor the nucleus, the forces are much more complex and it is not reasonable to expect to be able to calculate the wave functions accurately for each particle. Thus, the nuclear decay schemes show the experimental levels rather than calculated ones. This is illustrated in Eigure 4, which gives the decay scheme for Co. Here the lowest level represents the ground state of the whole nucleus and each level above that represents a different excited state of the nucleus. [Pg.449]

Color from Transition-Metal Compounds and Impurities. The energy levels of the excited states of the unpaked electrons of transition-metal ions in crystals are controlled by the field of the surrounding cations or cationic groups. Erom a purely ionic point of view, this is explained by the electrostatic interactions of crystal field theory ligand field theory is a more advanced approach also incorporating molecular orbital concepts. [Pg.418]

Hydrogen transfer in excited electronic states is being intensively studied with time-resolved spectroscopy. A typical scheme of electronic terms is shown in fig. 46. A vertical optical transition, induced by a picosecond laser pulse, populates the initial well of the excited Si state. The reverse optical transition, observed as the fluorescence band Fj, is accompanied by proton transfer to the second well with lower energy. This transfer is registered as the appearance of another fluorescence band, F2, with a large anti-Stokes shift. The rate constant is inferred from the time dependence of the relative intensities of these bands in dual fluorescence. The experimental data obtained by this method have been reviewed by Barbara et al. [1989]. We only quote the example of hydrogen transfer in the excited state of... [Pg.109]

In the lowest optieally excited state of the molecule, we have one eleetron (ti ) and one hole (/i ), each with spin 1/2 which couple through the Coulomb interaetion and can either form a singlet 5 state (5 = 0), or a triplet T state (S = 1). Since the electric dipole matrix element for optical transitions — ep A)/(me) does not depend on spin, there is a strong spin seleetion rule (AS = 0) for optical electric dipole transitions. This strong spin seleetion rule arises from the very weak spin-orbit interaction for carbon. Thus, to turn on electric dipole transitions, appropriate odd-parity vibrational modes must be admixed with the initial and (or) final electronic states, so that the w eak absorption below 2.5 eV involves optical transitions between appropriate vibronic levels. These vibronic levels are energetically favored by virtue... [Pg.49]


See other pages where Excited state of electron is mentioned: [Pg.456]    [Pg.117]    [Pg.858]    [Pg.269]    [Pg.925]    [Pg.58]    [Pg.456]    [Pg.117]    [Pg.858]    [Pg.269]    [Pg.925]    [Pg.58]    [Pg.56]    [Pg.229]    [Pg.29]    [Pg.1047]    [Pg.1121]    [Pg.1145]    [Pg.1326]    [Pg.1419]    [Pg.81]    [Pg.214]    [Pg.387]    [Pg.235]    [Pg.58]    [Pg.24]    [Pg.217]    [Pg.235]    [Pg.124]    [Pg.125]    [Pg.131]    [Pg.131]    [Pg.264]    [Pg.157]    [Pg.26]    [Pg.262]    [Pg.449]    [Pg.39]    [Pg.374]   


SEARCH



Electron-excitation states

Electronic excited

Electronic excited states

Electronical excitation

Electrons excitation

Electrons, excited

© 2024 chempedia.info