Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excitatory effect

Davis M Mescaline excitatory effects on acoustic startle are blocked by serotonin 2 antagonists. Psychopharmacology (Berl) 93 286—291, 1987 DishotskyNI, LoughamWD, Mogar RE, et al LSD and genetic damage. Science 172 431 40, 1971... [Pg.238]

There are few reports on the effects of nitrous oxide on dopaminergic neurotransmission. A study in mice showed that nitrous oxide inhalation produced a significant increase in locomotor activity that was antagonized in a dose-dependent fashion by the dopamine synthesis inhibitor a-methyl-/)-tyrosine (Hynes and Berkowitz 1983). Moreover, administration of the D2 antagonist haloperidol also reduced the locomotor activity induced by nitrous oxide (Hynes and Berkowitz 1983). These results suggest that excitatory effects induced by nitrous oxide may be also mediated by dopaminergic neurotransmission. However, other studies have reported that exposure to nitrous oxide resulted in decreased dopamine release by neurons in the striatum (Balon et al. 2002 Turle et al. 1998). [Pg.281]

Ca-Dependent Excitatory Effects of Maitotoxin on Smooth and Cardiac Muscle... [Pg.133]

In the present experiments, MTX markedly increased the tissue Ca content, Ca uptake, and intracellular free Ca concentration of smooth or cardiac mus cles. These Ca -mobilizing effects of MTX as well as its vasoconstrictive, cardio tonic, and cardiotoxic effects were profoundly suppressed or abolished by Ca entry blockers, polwalent cations, or Ca -free medium. It has been reported that MTX produces Ca -dependent excitatory effects on neuronal (10,11,18) or pituitary (26) cells and smooth (12,13), cardiac (14,15,17), or skeletal (16) muscles, and that all these actions of MTX were antagonized by Ca antagonists or polyvalent cations. These observations suggest that the enhanced Ca influx and the subsequent increase in cytoplasmic free Ca concentration play a dominant role in the excitatory effects of MTX. [Pg.142]

Ml and M3 receptors mediate the excitatory effects and since this postspike hyperpolarisation is blocked by phorbol esters and is therefore presumably dependent on IP3 production, one would expect it to be mediated through M] receptors (see above), especially as these are located postsynaptically. Unfortunately it does not appear to be affected by pirenzapine, the Mi antagonist. By contrast, muscarinic inhibition of the M current is reduced by the Mi antagonist but as it is not affected by phorbol esters is not likely to be linked to IP3 production, an Mi effect. [Pg.128]

In contrast to the nicotinic antagonists and indeed both nicotinic and muscarinic agonists, there are a number of muscarinic antagonists, like atropine, hyoscine (scopolamine) and benztropine, that readily cross the blood-brain barrier to produce central effects. Somewhat surprisingly, atropine is a central stimulant while hyoscine is sedative, as least in reasonable doses. This would be the expected effect of a drug that is blocking the excitatory effects of ACh on neurons but since the stimulant action of atropine can be reversed by an anticholinesterase it is still presumed to involve ACh in some way. Generally these compounds are effective in the control of motion but not other forms of sickness (especially hyoscine), tend to impair memory (Chapter 18) and reduce some of the symptoms of Parkinsonism (Chapter 15). [Pg.130]

While aspartic acid (aspartate) is also found in the CNS and has excitatory effects on neurons, little is known of its precise location and action although it may be released from intrinsic neurons and hippocampal pathways. It will not be discussed further. [Pg.211]

The mu, delta and kappa opioid receptors are coupled to G° and G proteins and the inhibitory actions of the opioids occur from the closing of calcium channels (in the case of the K receptor) and the opening of potassium channels (for /i, d and ORL-1). These actions result in either reductions in transmitter release or depression of neuronal excitability depending on the pre- or postsynaptic location of the receptors. Excitatory effects can also occur via indirect mechanisms such as disinhibition, which have been reported in the substantia gelatinosa and the hippocampus. Flere, the activation of opioid receptors on GABA neurons results in removal of GABA-mediated inhibition and so leads to facilitation. [Pg.258]

Figure 17.5 Possible scheme for the initiation of depolarisation block of DA neurons. In (a) the excitatory effect of glutamate released on to the DA neuron from the afferent input is counteracted by the inhibitory effect of DA, presumed to be released from dendrites, acting on D2 autoreceptors. In the absence of such inhibition due to the presence of a typical neuroleptic (b) the neuron will fire more frequently and eventually become depolarised. At5q)ical neuroleptics, like clozapine, will be less likely to produce the depolarisation of A9 neurons because they are generally weaker D2 antagonists and so will reduce the DA inhibition much less allowing it to counteract the excitatory input. Additionally some of them have antimuscarinic activity and will block the excitatory effect of ACh released from intrinsic neurons (see Fig. 17.7)... Figure 17.5 Possible scheme for the initiation of depolarisation block of DA neurons. In (a) the excitatory effect of glutamate released on to the DA neuron from the afferent input is counteracted by the inhibitory effect of DA, presumed to be released from dendrites, acting on D2 autoreceptors. In the absence of such inhibition due to the presence of a typical neuroleptic (b) the neuron will fire more frequently and eventually become depolarised. At5q)ical neuroleptics, like clozapine, will be less likely to produce the depolarisation of A9 neurons because they are generally weaker D2 antagonists and so will reduce the DA inhibition much less allowing it to counteract the excitatory input. Additionally some of them have antimuscarinic activity and will block the excitatory effect of ACh released from intrinsic neurons (see Fig. 17.7)...
Figure 17.7 Possible mechanism by which atypical neuroleptics with antimuscarinic activity produce few EPSs. Normally the inhibitory effects of DA released from nigrostriatal afferents on to striatal neuron D2 receptors is believed to balance the excitatory effect of ACh from intrinsic neurons acting on muscarinic (M2) receptors (a). Typical neuroleptics block the inhibitory effect of DA which leaves unopposed the excitatory effect of ACh (b) leading to the augmented activity of the striatal neurons and EPSs (see Fig. 15.2). An atypical neuroleptic with intrinsic antimuscarinic activity reduces this possibility by counteracting the excitatory effects of released ACh as well as the inhibitory effects of DA (c). Thus the control of striatal neurons remains balanced... Figure 17.7 Possible mechanism by which atypical neuroleptics with antimuscarinic activity produce few EPSs. Normally the inhibitory effects of DA released from nigrostriatal afferents on to striatal neuron D2 receptors is believed to balance the excitatory effect of ACh from intrinsic neurons acting on muscarinic (M2) receptors (a). Typical neuroleptics block the inhibitory effect of DA which leaves unopposed the excitatory effect of ACh (b) leading to the augmented activity of the striatal neurons and EPSs (see Fig. 15.2). An atypical neuroleptic with intrinsic antimuscarinic activity reduces this possibility by counteracting the excitatory effects of released ACh as well as the inhibitory effects of DA (c). Thus the control of striatal neurons remains balanced...
Noradrenaline acts on three types of receptor. The ai receptors mediate the main excitatory effects of noradrenaline upon wake-active neurons in the dorsal raphe, basal forebrain, and elsewhere (Vandermaelen Aghajanian, 1983 Nicoll, 1988 Fort et al., 1995 Brown et al., 2002). The a2 receptors mediate inhibitory effects of noradrenaline, e.g. on noradrenaline neurons themselves and on cholinergic brainstem neurons (Williams et al., 1985 Williams Reiner, 1993). The (3-receptors modulate neurons in a more subtle fashion, increasing excitability via blockade of afterhyperpolarizations in hippocampal and cortical neurons (Haas Konnerth, 1983). Activation of (3-receptors also promotes synaptic plasticity via activation of the cyclic-AMP-dependent kinase (PKA) and cyclic AMP response element binding protein (CREB) signal transduction pathway (Stanton Sarvey, 1987 Cirelli et al., 1996). [Pg.34]

The existence of such an interaction was first proposed by Hobson et al. (1975) in the form of their Reciprocal Interaction Model According to these authors, the REM-OFF neurons in the LC are inhibitory to the REM-ON neuronal population, whereas the REM-ON neurons exert an excitatory effect on the LC REM-OFF neurons. Cessation of neuronal activity of the LC neurons during REM sleep thus results in the withdrawal of the tonic inhibition from the REM-ON neurons,... [Pg.68]

The H2 receptor is the second class of HA receptors. This is another G-protein-coupled receptor but, unlike the Hi receptor, the H2 receptor is coupled to adenylyl cyclase via the GTP-binding Gs protein (Hill et ah, 1997). Encoded by an intronless gene and located on human chromosome 5, the H2 receptor is made up of c. 358 amino acids (Gantz et ah, 1991 Traiffort et ah, 1995). Activation of the H2 receptor causes an accumulation of cAMP and activation of protein kinase A that eventually leads to the activation of cyclic-AMP-response element (CRE)-binding protein (CREB) (Hill et ah, 1997). In neurons, the H2 receptor mediates its excitatory effects by blocking the Ca2+-dependent K+ channel (Haas Konnerth, 1983). [Pg.154]

Tasaka, K., Chung, Y. H. 8r Sawada, K. (1989). Excitatory effect of histamine on EEGs of the cortex and thalamus in rats. Agents Actions 27, 127-30. [Pg.176]


See other pages where Excitatory effect is mentioned: [Pg.255]    [Pg.482]    [Pg.760]    [Pg.133]    [Pg.134]    [Pg.208]    [Pg.5]    [Pg.127]    [Pg.130]    [Pg.132]    [Pg.132]    [Pg.133]    [Pg.135]    [Pg.201]    [Pg.212]    [Pg.256]    [Pg.256]    [Pg.272]    [Pg.283]    [Pg.284]    [Pg.285]    [Pg.317]    [Pg.463]    [Pg.41]    [Pg.38]    [Pg.69]    [Pg.92]    [Pg.153]    [Pg.198]    [Pg.199]   
See also in sourсe #XX -- [ Pg.75 ]

See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Excitatory

Excitatory Effects of CNS Hypoxia

Excitatory amino acid receptor metabotropic effects

© 2024 chempedia.info