Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters asymmetric reactions

A reiterative application of a two-carbon elongation reaction of a chiral carbonyl compound (Homer-Emmonds reaction), reduction (DIBAL) of the obtained trans unsaturated ester, asymmetric epoxidation (SAE or MCPBA) of the resulting allylic alcohol, and then C-2 regioselective addition of a cuprate (Me2CuLi) to the corresponding chiral epoxy alcohol has been utilized for the construction of the polypropionate-derived chain ]R-CH(Me)CH(OH)CH(Me)-R ], present as a partial structure in important natural products such as polyether, ansamycin, or macro-lide antibiotics [52]. A seminal application of this procedure is offered by Kishi s synthesis of the C19-C26 polyketide-type aliphatic segment of rifamycin S, starting from aldehyde 105 (Scheme 8.29) [53]. [Pg.290]

The matched double asymmetric reactions with (7 )-l and (a.R,S,S)-2 provide the (S,Z)-diastereomer with 94% and 96% selectivity, while in the mismatched reactions [(S)-l and (aS,R,R)-2] the (S.Z)-diastereomer is obtained with 77% and 92% selectivity, respectively. Interestingly, the selectivity of the reactions of (/ )-2,3-[isopropylidenebis(oxy)]propanal and 2 is comparable to that obtained in reactions of (7 )-2,3-[isopropylidenebis(oxy)]propanal and the much more easily prepared tartrate ester modified allylboronates (see Table 7 in Section 1.3.3.3.3.1.5.)41. However, 2 significantly outperforms the tartrate ester allylboronates in reactions with (5)-2-benzyloxypropanal (Section 1.3.3.3.3.1.5.), but not the chiral reagents developed by Brown and Corey42-43. [Pg.331]

Active methylene compounds may be sulfinylated by reaction of their enolate anions with sulfinate ester . This reaction has been investigated much in recent years and the compounds resulting from it have been of considerable use in asymmetric synthesis (see the chapter by Posner). Examples of the sulfinylation are given in the following paragraphs. [Pg.67]

As an extension of this work, these authors have applied this catalyst system to vinylogous asymmetric Mukaiyama-type aldol reactions, involving silyl vinyl ketene acetals and pyruvate esters. These reactions afforded the corresponding y,5-unsaturated a-hydroxy diesters with quaternary centres in high yields and enantioselectivities of up to 99% ee (Scheme 10.25). It was shown that the presence of CF3CH2OH as an additive facilitated the turnover of the catalyst. [Pg.314]

McKervey and Ye have developed chiral sulfur-containing dirhodium car-boxylates that have been subsequently employed as catalysts for asymmetric intramolecular C-H insertion reactions of y-alkoxy-ot-diazo-p-keto esters. These reactions produced the corresponding ci -2,5-disubstituted-3(2H)-furanones with diastereoselectivities of up to 47% de. Moreover, when a chiral y-alkoxy-a-diazo-p-keto ester containing the menthyl group as a chiral auxiliary was combined with rhodium(II) benzenesulfoneprolinate catalyst, a considerable diastereoselectivity enhancement was achieved with the de value being more than 60% (Scheme 10.74). [Pg.352]

Scheme 35 Cu-catalyzed asymmetric reaction of acrylates and allenic esters to ketones... Scheme 35 Cu-catalyzed asymmetric reaction of acrylates and allenic esters to ketones...
Dipolar cycloaddition reactions are of main interest in nitrile oxide chemistry. Recently, reviews and chapters in monographs appeared, which are devoted to individual aspects of these reactions. First of all, problems of asymmetric reactions of nitrile oxides (130, 131), including particular aspects, such as asymmetric metal-catalyzed 1,3-dipolar cycloaddition reactions (132, 133), development of new asymmetric reactions utilizing tartaric acid esters as chiral auxiliaries (134), and stereoselective intramolecular 1,3-dipolar cycloadditions (135) should be mentioned. Other problems considered are polymer-supported 1,3-dipolar cycloaddition reactions, important, in particular, for combinatorial chemistry... [Pg.19]

The use of tartrates as chiral auxiliaries in asymmetric reactions of allenyl bor-onic acid was first reported by Haruta et al.69 in 1982. However, it was not for several years that Roush et al.,70 after extensive study, achieved excellent results in the asymmetric aldol reactions induced by a new class of tartrate ester based allyl boronates. [Pg.168]

Early work on the asymmetric Darzens reaction involved the condensation of aromatic aldehydes with phenacyl halides in the presence of a catalytic amount of bovine serum albumin. The reaction gave the corresponding epoxyketone with up to 62% ee.67 Ohkata et al.68 reported the asymmetric Darzens reaction of symmetric and dissymmetric ketones with (-)-8-phenylmenthyl a-chloroacetate as examples of a reagent-controlled asymmetric reaction (Scheme 8-29). When this (-)-8-phenyl menthol derivative was employed as a chiral auxiliary, Darzens reactions of acetone, pentan-3-one, cyclopentanone, cyclohexanone, or benzophenone with 86 in the presence of t-BuOK provided dia-stereomers of (2J ,3J )-glycidic ester 87 with diastereoselectivity ranging from 77% to 96%. [Pg.475]

We began these studies with the intention of applying this tandem asymmetric epoxidation/asymmetric allylboration sequence towards the synthesis of D-olivose derivative 63 (refer to Figure 18). As the foregoing discussion indicates, our research has moved somewhat away from this goal and we have not yet had the opportunity to undertake this synthesis. This, as well as the synthesis of the olivomycin CDE trisaccharide, remain as problems for future exploration. Because it is the enantioselectivity of the tartrate ester allylboronates that has limited the success of the mismatched double asymmetric reactions discussed here, as well as in several other cases published from our laboratorythe focus of our work on chiral allyiboronate chemistry has shifted away from synthetic applications and towards the development of a more highly enantioselective chiral auxiliary. One such auxiliary has been developed, as described below. [Pg.266]

Use of tartrate esters as chiral auxiliaries in the asymmetric reactions of allenyl boronic acid also have been reported Ikeda, N. Aral, I. Yamamoto, H. J. Am. Chem. Soc. 1986,108, 483 Haruta, R. Ishiguro, M. Ikeda, N. Yamamoto, H. Ibid. 1982,104, 7667. [Pg.275]

An interesting asymmetric transformation is the asymmetric conjugate addition to a-acetamidoacryhc ester 30 giving phenylalanine derivative 31, which has been reported by Reetz (Scheme 3.10) [10]. The addition of phenylboronic acid 2m in the presence of a rhodium complex of l,T-binaphthol-based diphosphinite ligand 32 gave a quantitative yield of 31 with up to 11% enantiomeric excess. In this asymmetric reaction the stereochemical outcome is determined at the hydrolysis step of an oxa-7r-aUylrhodium intermediate, not at the insertion step (compare Scheme 3.7). [Pg.66]

Yamamoto and co-workers (135,135-137) recently reported a new method for stereocontrol in nitrile oxide cycloadditions. Metal ion-catalyzed diastereoselective asymmetric reactions using chiral electron-deficient dipolarophiles have remained unreported except for reactions using a-methylene-p-hydroxy esters, which were described in Section 11.2.2.6. Although synthetically very useful and, hence, attractive as an entry to the asymmetric synthesis of 2-isoxazohnes, the application of Lewis acid catalysis to nitrile oxide cycloadditions with 4-chiral 3-(2-aIkenoyl)-2-oxazolidinones has been unsuccessful, even when > 1 equiv of Lewis acids are employed. However, as shown in the Scheme 11.37, diastereoselectivities in favor of the ffc-cycloadducts are improved (diastereomer ratio = 96 4) when the reactions are performed in dichloromethane in the presence of 1 equiv of MgBr2 at higher than normal concentrations (0.25 vs 0.083 M) (140). The Lewis acid... [Pg.789]

Trost and his co-workers succeeded in the allylic alkylation of prochiral carbon-centered nucleophiles in the presence of Trost s ligand 118 and obtained the corresponding allylated compounds with an excellent enantioselec-tivity. A variety of prochiral carbon-centered nucleophiles such as / -keto esters, a-substituted ketones, and 3-aryl oxindoles are available for this asymmetric reaction (Scheme jg) Il3,ll3a-ll3g Q jjg recently, highly enantioselective allylation of acyclic ketones such as acetophenone derivatives has been reported by Hou and his co-workers, Trost and and Stoltz and Behenna - (Scheme 18-1). On the other hand, Ito and Kuwano... [Pg.96]

Asymmetric acetoxylation of esters.3 Reaction of lead tetraacetate with the silyl enolate of the chiral ester 2 derived from camphorsulfonic acid results in a-acetoxylation with high diastereoselectivity. After crystallization 3 is obtained in 95% de. The product can be hydrolyzed to the optically active a-acetoxy carboxylic acid by K2C03 or reduced to the chiral glycol 4 by LiAlHj. [Pg.62]

Tomioka et al. reported the asymmetric Michael addition of lithium thiolates catalyzed by chiral aminoether 31 (Scheme 8D. 18) [39]. Thus, in the presence of catalytic amounts of 31 (10 mol %) and lithium 2-(trimethylsilyl)thiophenolate 32-Li (8 mol %), thiol 32 (3 equiv.) reacted with a,p-unsaturated esters at -78°C in toluene-hexane solvent to give the Michael adduct with up to 97% ee. In the ahsence of 31, the reaction of thiophenol proceeded in only 0.5% yield at room temperature. A monomeric complex consisting of 31 and lithium is proposed as the key reactive species in this asymmetric reaction. The trimethylsilyl group at the ortho-po-sition of the thiol moiety in 32 contributes to the formation of the stereochemically defined monomeric chelated structure, wherein the lithium cation is coordinated with the three heteroatoms of the tridentate ligand 31. The reactions of acyclic /nmv-a,P-unsaturated esters (R1 = Me, Et, Pr, Bu, Bu, PhCH9 R2 = H) proceeds with high enantioselectivity in... [Pg.589]

Stoichiometric and catalytic asymmetric reactions of lithium enolate esters with imines have been developed using an external chiral ether ligand that links the components to form a ternary complex.36 The method affords /i-lactams in high enantiomeric excess. [Pg.7]

Asymmetric reactions of a chiral glyoxylate ester. Grignard reagents add to the glyoxylate ester (2) of ( — )-l with unusually high asymmetric induction. The chirality... [Pg.212]


See other pages where Esters asymmetric reactions is mentioned: [Pg.167]    [Pg.343]    [Pg.345]    [Pg.316]    [Pg.96]    [Pg.306]    [Pg.39]    [Pg.8]    [Pg.370]    [Pg.260]    [Pg.20]    [Pg.776]    [Pg.889]    [Pg.623]    [Pg.735]    [Pg.167]    [Pg.281]    [Pg.79]    [Pg.131]   
See also in sourсe #XX -- [ Pg.773 ]

See also in sourсe #XX -- [ Pg.773 ]




SEARCH



Asymmetric reactions, of lithium enolate esters

© 2024 chempedia.info