Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium-chemistry limit reacting scalars

Having demonstrated the existence of a mixture-fraction vector for certain turbulent reacting flows, we can now turn to the question of how to treat the reacting scalars in the equilibrium-chemistry limit for such flows. Applying the linear transformation given in (5.107), the reaction-progress-vector transport equation becomes... [Pg.196]

Thus, in the equilibrium-chemistry limit, the reacting scalars depend on space and time only through the mixture-fraction vector ... [Pg.197]

In a CFD calculation, one is usually interested in computing only the reacting-scalar means and (sometimes) the covariances. For binary mixing in the equilibrium-chemistry limit, these quantities are computed from (5.154) and (5.155), which contain the mixture-fraction PDF. However, since the presumed PDF is uniquely determined from the mixture-fraction mean and variance, (5.154) and (5.155) define mappings (or functions) from (I>- space ... [Pg.198]

In the equilibrium-chemistry limit, the turbulent-reacting-flow problem thus reduces to solving the Reynolds-averaged transport equations for the mixture-fraction mean and variance. Furthermore, if the mixture-fraction field is found from LES, the same chemical lookup tables can be employed to find the SGS reacting-scalar means and covariances simply by setting x equal to the resolved-scale mixture fraction and x2 equal to the SGS mixture-fraction variance.88... [Pg.199]

In summary, in the equilibrium-chemistry limit, the computational problem associated with turbulent reacting flows is greatly simplified by employing the presumed mixture-fraction PDF method. Indeed, because the chemical source term usually leads to a stiff system of ODEs (see (5.151)) that are solved off-line, the equilibrium-chemistry limit significantly reduces the computational load needed to solve a turbulent-reacting-flow problem. In a CFD code, a second-order transport model for inert scalars such as those discussed in Chapter 3 is utilized to find ( ) and and the equifibrium com-... [Pg.199]

In Section 5.1, we have seen (Fig. 5.2) that the molar concentration vector c can be transformed using the SVD of the reaction coefficient matrix T into a vector c that has Nr reacting components cr and N conserved components cc.35 In the limit of equilibrium chemistry, the behavior of the Nr reacting scalars will be dominated by the transformed chemical source term S. 36 On the other hand, the behavior of the N conserved scalars will depend on the turbulent flow field and the inlet and initial conditions for the flow domain. However, they will be independent of the chemical reactions, which greatly simplifies the mathematical description. [Pg.176]


See other pages where Equilibrium-chemistry limit reacting scalars is mentioned: [Pg.16]    [Pg.436]   
See also in sourсe #XX -- [ Pg.177 , Pg.180 ]

See also in sourсe #XX -- [ Pg.177 , Pg.180 ]




SEARCH



Equilibrium limit

Equilibrium-chemistry limit

REACT

Scalar

© 2024 chempedia.info