Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxy positron annihilation lifetime

Positron annihilation lifetime spectroscopy (PALS) is normally applied to determine the free volume properties of a cured thermoset. The theory and methodology of PALS [27, 28] is briefly described next. The positron, an antiparticle of an electron, is used to investigate the free volume between polymer chains. The birth of the positron can be detected by the release of a gamma ray of characteristic energy. This occurs approximately 3 ps after positron emission when the Na decays to Ne. Once inside the polymer material, the positron forms one of the two possible types of positroniums, an ort o-positronium or a p(3 ra-positronium, obtained by pairing with an electron abstracted from the polymer environment. The decay spectra are obtained by the death event of the positron, pi ra-positronium or ort o-positronium species. By appropriate curve fitting, the lifetimes of the various species and their intensity can be determined. The lifetime of an ort o-positronium (Xj) and intensity (I3) have been found to be indicative of the free volume in a polymer system because this is where the relevant species become localised. X3 is related to the size of the free volume sites and I3 to their number concentration. The free volume properties of difunctional and multifunctional epoxies are shown in Table 3.5. The data clearly... [Pg.172]

MacQueen R.C., Granata R.D. (1996), A positron annihilation lifetime spectroscopic study of the corrosion protective properties of epoxy coatings . Prog. Org. Coat., 28, 97-112. [Pg.263]

Network properties and microscopic structures of various epoxy resins cross-linked by phenolic novolacs were investigated by Suzuki et al.97 Positron annihilation spectroscopy (PAS) was utilized to characterize intermolecular spacing of networks and the results were compared to bulk polymer properties. The lifetimes (t3) and intensities (/3) of the active species (positronium ions) correspond to volume and number of holes which constitute the free volume in the network. Networks cured with flexible epoxies had more holes throughout the temperature range, and the space increased with temperature increases. Glass transition temperatures and thermal expansion coefficients (a) were calculated from plots of t3 versus temperature. The Tgs and thermal expansion coefficients obtained from PAS were lower titan those obtained from thermomechanical analysis. These differences were attributed to micro-Brownian motions determined by PAS versus macroscopic polymer properties determined by thermomechanical analysis. [Pg.416]


See other pages where Epoxy positron annihilation lifetime is mentioned: [Pg.465]    [Pg.172]    [Pg.308]    [Pg.366]   


SEARCH



Annihilate

Annihilation

Annihilation lifetime

Positron

Positron annihilation

Positron annihilation lifetime

Positron lifetimes

© 2024 chempedia.info