Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxides halides

Asymmetric elimination with high induction has mainly been described for epoxides, halides and alcohols (using chiral bases), for chiral ketals (using achiral Lewis acids), and for chiral sulfoximines (using achiral bases)1 3. For each compound class only a few examples have been examined, thus, the scope of these methods has not yet been fully explored. The literature on asymmetric eliminations up to 1970 has been covered in a review article4. [Pg.608]

The S-2-(triniethylsilyl)ethyl thioether is typically introduced using 2-(trimet hylsilyl)ethanethiol by reaction with an epoxide, halide or sulfonate. [Pg.680]

Reduction of aldehydes. This reagent reduces aldehyde groups with high selectivity in the presence of kcto and many other groups (ester, lactone, nitrile, epoxide, halide, alkene, alkyne). The primary alcohol is isolated by addition of 8-aminoethanol (equation I). [Pg.334]

The synthesis of dichloronorcarane from cyclohexene by the chloroform-base-PTC method has been improved further as has the preparation of a-halogeno-aP-unsaturated ketones via em-dihalogenocyclopropanes by employing trimethylsilyl vinyl ethers rather than ethyl vinyl ethers. The formation of gem-difluorocyclo-propanes proceeds in high yield (60— 90%) when chlorodifluoromethane is treated with halide ion and an epoxide in the presence of an olefin. The epoxide-halide ion combination is employed to produce a base of sufficient strength, and in sufficient concentration, to maximize the production of difluorocarbene oxiran and chloro-methyloxiran afford the most suitable bases when treated with chloride ion (Scheme 4). [Pg.14]

Vicinal halohydrin Conjugate base Epoxide Halide ion... [Pg.662]

Classification and Organization of Reactions forming Difunctional Compounds. This new chapter considers all possible difunctional compounds formed from the groups acetylene, carboxylic acid, alcohol, aldehyde, amide, amine, ester, ether, epoxide, halide, ketone, nitrile, and olefin. Reactions that form difunctional compounds are classified into sections on the basis of the two functional groups of the product. The relative positions of the groups do not affect the classification. Thus preparations of 1,2-aminoalcohols, 1,3-aminoalcohols and 1,4-aminoalcohols are included in a single section. It is recommended that the following illustrative examples of the classification of difunctional compounds be scrutinized closely. [Pg.12]

Alkylation of Enolates (condensation of enolates with alkyl halides and epoxides) Comprehensive Organic Synthesis 1991, vol. 3, 1. [Pg.74]

The proton of terminal acetylenes is acidic (pKa= 25), thus they can be deprotonated to give acetylide anions which can undergo substitution reactions with alkyl halides, carbonyls, epoxides, etc. to give other acetylenes. [Pg.115]

The hydrogenolyaia of cyclopropane rings (C—C bond cleavage) has been described on p, 105. In syntheses of complex molecules reductive cleavage of alcohols, epoxides, and enol ethers of 5-keto esters are the most important examples, and some selectivity rules will be given. Primary alcohols are converted into tosylates much faster than secondary alcohols. The tosylate group is substituted by hydrogen upon treatment with LiAlH (W. Zorbach, 1961). Epoxides are also easily opened by LiAlH. The hydride ion attacks the less hindered carbon atom of the epoxide (H.B. Henhest, 1956). The reduction of sterically hindered enol ethers of 9-keto esters with lithium in ammonia leads to the a,/S-unsaturated ester and subsequently to the saturated ester in reasonable yields (R.M. Coates, 1970). Tributyltin hydride reduces halides to hydrocarbons stereoselectively in a free-radical chain reaction (L.W. Menapace, 1964) and reacts only slowly with C 0 and C—C double bonds (W.T. Brady, 1970 H.G. Kuivila, 1968). [Pg.114]

Next in what amounts to an intramolecular Williamson ether synthesis the alkoxide oxygen attacks the carbon that bears the halide leaving group giving an epoxide As m other nucleophilic substitutions the nucleophile approaches carbon from the side oppo site the bond to the leaving group... [Pg.677]

Overall the stereospecificity of this method is the same as that observed m per oxy acid oxidation of alkenes Substituents that are cis to each other m the alkene remain CIS m the epoxide This is because formation of the bromohydrm involves anti addition and the ensuing intramolecular nucleophilic substitution reaction takes place with mver Sion of configuration at the carbon that bears the halide leaving group... [Pg.677]

Base promoted cyclization of vicinal halohydrms (Section 16 10) This reaction is an intramolecu lar version of the Williamson ether synthesis The alcohol function of a vicinal halohydrin is con verted to its conjugate base which then displa ces halide from the adjacent carbon to give an epoxide... [Pg.693]

The dianions derived from furan- and thiophene-carboxylic acids by deprotonation with LDA have been reacted with various electrophiles (Scheme 64). The oxygen dianions reacted efficiently with aldehydes and ketones but not so efficiently with alkyl halides or epoxides. The sulfur dianions reacted with allyl bromide, a reaction which failed in the case of the dianions derived from furancarboxylic acids, and are therefore judged to be the softer nucleophiles (81JCS(Pl)1125,80TL505l). [Pg.72]

Me3SiI, CH2CI2, 25°, 15 min, 85-95% yield.Under these cleavage conditions i,3-dithiolanes, alkyl and trimethylsilyl enol ethers, and enol acetates are stable. 1,3-Dioxolanes give complex mixtures. Alcohols, epoxides, trityl, r-butyl, and benzyl ethers and esters are reactive. Most other ethers and esters, amines, amides, ketones, olefins, acetylenes, and halides are expected to be stable. [Pg.180]

This reaction illustrates a stereoselective preparation of (Z)-vinylic cuprates, which are very useful synthetic intermediates. They react with a variety of electrophiles such as carbon dioxide, epoxides, aldehydes, allylic halides, alkyl halides, and acetylenic halides they undergo... [Pg.7]

Lithium aluminum hydride (LiAlH4) is the most powerful of the hydride reagents. It reduces acid chlorides, esters, lactones, acids, anhydrides, aldehydes, ketones and epoxides to alcohols amides, nitriles, imines and oximes to amines primary and secondary alkyl halides and toluenesulfonates to... [Pg.61]

Some instances of incomplete debromination of 5,6-dibromo compounds may be due to the presence of 5j5,6a-isomer of wrong stereochemistry for anti-coplanar elimination. The higher temperature afforded by replacing acetone with refluxing cyclohexanone has proved advantageous in some cases. There is evidence that both the zinc and lithium aluminum hydride reductions of vicinal dihalides also proceed faster with diaxial isomers (ref. 266, cf. ref. 215, p. 136, ref. 265). The chromous reduction of vicinal dihalides appears to involve free radical intermediates produced by one electron transfer, and is not stereospecific but favors tra 5-elimination in the case of vic-di-bromides. Chromous ion complexed with ethylene diamine is more reactive than the uncomplexed ion in reduction of -substituted halides and epoxides to olefins. ... [Pg.340]

The reaction of chlorodifluorotnethane with alkoxide ions generated in low concentration from halide ions and epoxides [28, 29] is an interesting, higher temperature method that gives good to excellent yields of gem-difluorocyclo-propanes from just moderately nucleophilic olefins (equation 9)... [Pg.770]

Since cbiral sulfur ylides racemize rapidly, they are generally prepared in situ from chiral sulfides and halides. The first example of asymmetric epoxidation was reported in 1989, using camphor-derived chiral sulfonium ylides with moderate yields and ee (< 41%) Since then, much effort has been made in tbe asymmetric epoxidation using sucb a strategy without a significant breakthrough. In one example, the reaction between benzaldehyde and benzyl bromide in the presence of one equivalent of camphor-derived sulfide 47 furnished epoxide 48 in high diastereoselectivity (trans cis = 96 4) with moderate enantioselectivity in the case of the trans isomer (56% ee). ... [Pg.6]

Variations and Improvements on Alkylations of Chiral OxazoUnes Metalated chiral oxazolines can be trapped with a variety of different electrophiles including alkyl halides, aldehydes,and epoxides to afford useful products. For example, treatment of oxazoline 20 with -BuLi followed by addition of ethylene oxide and chlorotrimethylsilane yields silyl ether 21. A second metalation/alkylation followed by acidic hydrolysis provides chiral lactone 22 in 54% yield and 86% ee. A similar... [Pg.240]


See other pages where Epoxides halides is mentioned: [Pg.241]    [Pg.163]    [Pg.163]    [Pg.23]    [Pg.77]    [Pg.241]    [Pg.163]    [Pg.163]    [Pg.23]    [Pg.77]    [Pg.45]    [Pg.53]    [Pg.10]    [Pg.81]    [Pg.2]    [Pg.283]    [Pg.438]    [Pg.80]    [Pg.102]   
See also in sourсe #XX -- [ Pg.121 , Pg.124 ]




SEARCH



Acyl halides/epoxides

Alkyl halides epoxides

Alkylating agents, alkyl halides epoxides

Allyl halides epoxidation

Epoxides, with acyl halides

Halide ions, reaction with epoxides

Halides, alkyl from epoxides

Hydrogen halides epoxides

Hydrogen halides with epoxides

Hydrogen halides, reaction with epoxide

Lithium halides epoxide rearrangement

Magnesium halides epoxide ring opening

Reduction of halides, sulfonates and epoxides

Tungsten halides epoxides

© 2024 chempedia.info